ترغب بنشر مسار تعليمي؟ اضغط هنا

Globular clusters in the era of precision astrometry

73   0   0.0 ( 0 )
 نشر من قبل Paolo Bianchini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Bianchini




اسأل ChatGPT حول البحث

The study of the kinematics of globular clusters (GCs) offers the possibility of unveiling their long term evolution and uncovering their yet unknown formation mechanism. Gaia DR2 has strongly revitalized this field and enabled the exploration of the 6D phase-space properties of Milky Way GCs, thanks to precision astrometry. However, to fully leverage on the power of precision astrometry, a thorough investigations of the data is required. In this contribution, we show that the study of the mean radial proper motion profiles of GCs offers an ideal benchmark to assess the presence of systematics in crowded fields. Our work demonstrates that systematics in Gaia DR2 for the closest 14 GCs are below the random measurement errors, reaching a precision of ~0.015 mas/yr for mean proper motion measurements. Finally, through the analysis of the tangential component of proper motions, we report the detection of internal rotation in a sample of ~50 GCs, and outline the implications of the presence of angular momentum for the formation mechanism of proto-GC. This result gives the first taste of the unparalleled power of Gaia DR2 for GCs science, in preparation for the subsequent data releases.



قيم البحث

اقرأ أيضاً

Precision premium, a concept in astrometry that was firstly presented by Pascu in 1994, initially means that the relative positional measurement of the Galilean satellites of Jupiter would be more accurate when their separations are small. Correspond ingly, many observations have been obtained of these Galilean satellites since then. However, the exact range of the separation in which precision premium takes effect is not clear yet, not to say the variation of the precision with the separation. In this paper, the observations of open cluster M35 are used to study precision premium and the newest star catalogue Gaia DR2 is used in the data reduction. Our results show that precision premium does work in about less than 100 arcsecs for two concerned objects, and the relative positional precision can be well fitted by a sigmoidal function. Observations of Uranian satellites are also reduced as an example of precision premium.
78 - P. B. Stetson 2019
We present wide-field, ground-based Johnson-Cousins UBVRI photometry for 48 Galactic globular clusters based on almost 90000 public and proprietary images. The photometry is calibrated with the latest transformations obtained in the framework of our secondary standard project, with typical internal and external uncertainties of order a few millimagnitudes. These data provide a bridge between existing small-area, high-precision HST photometry and all sky-catalogues from large surveys like Gaia, SDSS, or LSST. For many clusters, we present the first publicly available photometry in some of the five bands (typically U and R). We illustrate the scientific potential of the photometry with examples of surface density and brightness profiles and of colour-magnitude diagrams, with the following highlights: (i) we study the morphology of NGC 5904, finding a varying ellipticity and position angle as a function of radial distance; (ii) we show U-based colour-magnitude diagrams and demonstrate that no cluster in our sample is free from multiple stellar populations, with the possible exception of a few clusters with high and differential reddening or field contamination, for which more sophisticated investigations are required. This is true even for NGC 5694 and Terzan 8, that were previously considered as (mostly) single-population candidates.
Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at $z=0$, I compute the contribution of GCs to ultraviolet luminosity functions (UVLFs) in the high-redshift Universe ($10 gtrsim z gtrsim 4$). Even under absolutely minimal assumptions - no disruption of GCs and no reduction in GC stellar mass from early times to the present - GC star formation contributes non-negligibly to the UVLF at luminosities that are accessible to the Hubble Space Telescope (HST; $M_{1500} approx -17$). If the stellar masses of GCs were significantly higher in the past, as is predicted by most models explaining GC chemical anomalies, then GCs dominate the UV emission from many galaxies in existing deep-field observations. On the other hand, it is difficult to reconcile observed UVLFS with models requiring stellar masses at birth that exceed present-day stellar masses by more than a factor of 10. The James Webb Space Telescope will be able to directly detect individual GCs at $z sim 6$ in essentially all bright galaxies, and many galaxies below the knee of the UVLF, for most of the scenarios considered here. The properties of a subset of high-$z$ galaxies with $-19 lesssim M_{1500} lesssim -14$ in HST lensing fields indicate that they may actually be GCs in formation.
177 - Sara Beck 2014
It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The Super Star Clusters (SSCs) seen in starburst galaxi es are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have a million solar masses or more in volumes of a few cubic parsecs and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency eta, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded HII region.
168 - G.C. Myeong 2018
The Gaia Sausage is an elongated structure in velocity space discovered by Belokurov et al. (2018) using the kinematics of metal-rich halo stars. It was created by a massive dwarf galaxy ($sim 5 times 10^{10} M_odot$) on a strongly radial orbit that merged with the Milky Way at a redshift $zlesssim 3$. We search forthe associated Sausage Globular Clusters by analysing the structure of 91 Milky Way globular clusters (GCs) in action space using the Gaia Data Release 2 catalogue, complemented with Hubble Space Telescope proper motions. There is a characteristic energy $E_{rm crit}$ which separates the in situ objects, such as the bulge/disc clusters, from the accreted objects, such as the young halo clusters. There are 15 old halo GCs that have $E > E_{rm crit}$. Eight of the high energy, old halo GCs are strongly clumped in azimuthal and vertical action, yet strung out like beads on a chain at extreme radial action. They are very radially anisotropic ($beta sim 0.95$) and move on orbits that are all highly eccentric ($e gtrsim 0.80$). They also form a track in the age-metallicity plane distinct from the bulk of the Milky Way GCs and compatible with a dwarf spheroidal origin. These properties are consistent with GCs associated with the merger event that gave rise to the Gaia Sausage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا