ترغب بنشر مسار تعليمي؟ اضغط هنا

The Youngest Globular Clusters

177   0   0.0 ( 0 )
 نشر من قبل Sara Beck
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sara Beck




اسأل ChatGPT حول البحث

It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The Super Star Clusters (SSCs) seen in starburst galaxies are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have a million solar masses or more in volumes of a few cubic parsecs and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency eta, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded HII region.



قيم البحث

اقرأ أيضاً

168 - G.C. Myeong 2018
The Gaia Sausage is an elongated structure in velocity space discovered by Belokurov et al. (2018) using the kinematics of metal-rich halo stars. It was created by a massive dwarf galaxy ($sim 5 times 10^{10} M_odot$) on a strongly radial orbit that merged with the Milky Way at a redshift $zlesssim 3$. We search forthe associated Sausage Globular Clusters by analysing the structure of 91 Milky Way globular clusters (GCs) in action space using the Gaia Data Release 2 catalogue, complemented with Hubble Space Telescope proper motions. There is a characteristic energy $E_{rm crit}$ which separates the in situ objects, such as the bulge/disc clusters, from the accreted objects, such as the young halo clusters. There are 15 old halo GCs that have $E > E_{rm crit}$. Eight of the high energy, old halo GCs are strongly clumped in azimuthal and vertical action, yet strung out like beads on a chain at extreme radial action. They are very radially anisotropic ($beta sim 0.95$) and move on orbits that are all highly eccentric ($e gtrsim 0.80$). They also form a track in the age-metallicity plane distinct from the bulk of the Milky Way GCs and compatible with a dwarf spheroidal origin. These properties are consistent with GCs associated with the merger event that gave rise to the Gaia Sausage.
Internal rotation is considered to play a major role in the dynamics of some globular clusters. However, in only few cases it has been studied by quantitative application of realistic and physically justified global models. Here we present a dynamica l analysis of the photometry and three-dimensional kinematics of omega Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is very well interpreted by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster omega Cen, the selected model reproduces the complex three-dimensional kinematics; in particular the observed anisotropy profile, characterized by a transition from isotropy, to weakly-radial anisotropy, and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.
227 - E. Pancino 2017
The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach suffi cient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance, and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majority of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that: (i) the systemic proper motions and parallaxes will be determined to 1% or better up to 15 kpc, and the nearby clusters will have radial velocities to a few km/s ; (ii) internal kinematics will be of unprecendented quality, cluster masses will be determined to 10% up to 15 kpc and beyond, and it will be possible to identify differences of a few km/s or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V<17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3% errors on the absolute photometric calibration.
171 - E. Pancino 2013
We present a simulation of twelve globular clusters with different concentration, distance, and background population, whose properties are transformed into Gaia observables with the help of the lates Gaia science performances prescriptions. We adopt simplified crowding receipts, based on five years of simulations performed by DPAC (Data Processing and Analysis Consortium) scientists, to explore the effect of crowding and to give a basic idea of what will be made possible by Gaia in the field of Galactic globular clusters observations.
The classical theory of cluster relaxation is unsatisfactory because it involves the Coulomb logarithm. The Balescu-Lenard (BL) equation provides a rigorous alternative that has no ill-defined parameter. Moreover, the BL equation, unlike classical th eory, includes the clusters self-gravity. A heuristic argument is given that indicates that relaxation does not occur predominantly through two-particle scattering and is enhanced by self-gravity. The BL equation is adapted to a spherical system and used to estimate the flux through the action space of isochrone clusters with different velocity anisotropies. A range of fairly different secular behaviours is found depending on the fraction of radial orbits. Classical theory is also used to compute the corresponding classical fluxes. The BL and classical fluxes are very different because (a) the classical theory materially under-estimates the impact of large-scale collectively amplified fluctuations and (b) only the leading terms in an infinite sum for the BL flux are computed. A complete theory of cluster relaxation likely requires that the sum in the BL equation be decomposed into a sum over a finite number of small wavenumbers complemented by an integral over large wavenumbers analogous to classical theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا