ﻻ يوجد ملخص باللغة العربية
We perform an analysis of the three-dimensional cosmic matter density field traced by galaxies of the SDSS-III/BOSS galaxy sample. The systematic-free nature of this analysis is confirmed by two elements: the successful cross-correlation with the gravitational lensing observations derived from Planck 2018 data and the absence of bias at scales $k simeq 10^{-3}-10^{-2}h$ Mpc$^{-1}$ in the a posteriori power spectrum of recovered initial conditions. Our analysis builds upon our algorithm for Bayesian Origin Reconstruction from Galaxies (BORG) and uses a physical model of cosmic structure formation to infer physically meaningful cosmic structures and their corresponding dynamics from deep galaxy observations. Our approach accounts for redshift-space distortions and light-cone effects inherent to deep observations. We also apply detailed corrections to account for known and unknown foreground contaminations, selection effects and galaxy biases. We obtain maps of residual, so far unexplained, systematic effects in the spectroscopic data of SDSS-III/BOSS. Our results show that unbiased and physically plausible models of the cosmic large scale structure can be obtained from present and next-generation galaxy surveys.
We present a self-consistent Bayesian formalism to sample the primordial density fields compatible with a set of dark matter density tracers after cosmic evolution observed in redshift space. Previous works on density reconstruction did not self-cons
We present a novel halo painting network that learns to map approximate 3D dark matter fields to realistic halo distributions. This map is provided via a physically motivated network with which we can learn the non-trivial local relation between dark
Anisotropies of the cosmic microwave background (CMB) have proven to be a very powerful tool to constrain dark matter annihilation at the epoch of recombination. However, CMB constraints are currently derived using a number of reasonable but yet un-t
We address the problem of inferring the three-dimensional matter distribution from a sparse set of one-dimensional quasar absorption spectra of the Lyman-$alpha$ forest. Using a Bayesian forward modelling approach, we focus on extending the dynamical
We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy