ﻻ يوجد ملخص باللغة العربية
Emergence of artificial intelligence techniques in biomedical applications urges the researchers to pay more attention on the uncertainty quantification (UQ) in machine-assisted medical decision making. For classification tasks, prior studies on UQ are difficult to compare with each other, due to the lack of a unified quantitative evaluation metric. Considering that well-performing UQ models ought to know when the classification models act incorrectly, we design a new evaluation metric, area under Confidence-Classification Characteristic curves (AUCCC), to quantitatively evaluate the performance of the UQ models. AUCCC is threshold-free, robust to perturbation, and insensitive to the classification performance. We evaluate several UQ methods (e.g., max softmax output) with AUCCC to validate its effectiveness. Furthermore, a simple scheme, named Uncertainty Distillation (UDist), is developed to boost the UQ performance, where a confidence model is distilling the confidence estimated by deep ensembles. The proposed method is easy to implement; it consistently outperforms strong baselines on natural and medical image datasets in our experiments.
Uncertainty quantification (UQ) plays a pivotal role in reduction of uncertainties during both optimization and decision making processes. It can be applied to solve a variety of real-world applications in science and engineering. Bayesian approximat
We address the problem of uncertainty calibration and introduce a novel calibration method, Parametrized Temperature Scaling (PTS). Standard deep neural networks typically yield uncalibrated predictions, which can be transformed into calibrated confi
Uncertainty quantification in neural networks gained a lot of attention in the past years. The most popular approaches, Bayesian neural networks (BNNs), Monte Carlo dropout, and deep ensembles have one thing in common: they are all based on some kind
Traditional deep neural nets (NNs) have shown the state-of-the-art performance in the task of classification in various applications. However, NNs have not considered any types of uncertainty associated with the class probabilities to minimize risk d
Label Smoothing (LS) improves model generalization through penalizing models from generating overconfident output distributions. For each training sample the LS strategy smooths the one-hot encoded training signal by distributing its distribution mas