ﻻ يوجد ملخص باللغة العربية
Label Smoothing (LS) improves model generalization through penalizing models from generating overconfident output distributions. For each training sample the LS strategy smooths the one-hot encoded training signal by distributing its distribution mass over the non-ground truth classes. We extend this technique by considering example pairs, coined PLS. PLS first creates midpoint samples by averaging random sample pairs and then learns a smoothing distribution during training for each of these midpoint samples, resulting in midpoints with high uncertainty labels for training. We empirically show that PLS significantly outperforms LS, achieving up to 30% of relative classification error reduction. We also visualize that PLS produces very low winning softmax scores for both in and out of distribution samples.
Traditional deep neural nets (NNs) have shown the state-of-the-art performance in the task of classification in various applications. However, NNs have not considered any types of uncertainty associated with the class probabilities to minimize risk d
Lifelong learning capabilities are crucial for sentiment classifiers to process continuous streams of opinioned information on the Web. However, performing lifelong learning is non-trivial for deep neural networks as continually training of increment
Humans are experts at high-fidelity imitation -- closely mimicking a demonstration, often in one attempt. Humans use this ability to quickly solve a task instance, and to bootstrap learning of new tasks. Achieving these abilities in autonomous agents
Model-agnostic meta-learning (MAML) is arguably the most popular meta-learning algorithm nowadays, given its flexibility to incorporate various model architectures and to be applied to different problems. Nevertheless, its performance on few-shot cla
We present a novel variant of Domain Adversarial Networks with impactful improvements to the loss functions, training paradigm, and hyperparameter optimization. New loss functions are defined for both forks of the DANN network, the label predictor an