ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Crab radiation with a meteorological balloon borne phoswich detector

53   0   0.0 ( 0 )
 نشر من قبل Ritabrata Sarkar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use existing light weight balloon facility of Indian Centre for Space Physics to detect the X-ray radiation from Crab pulsar with a phoswich detector. We present the design considerations and characterization of the detector used for this purpose. We model the background radiation in the detector environment at various altitudes and use this in spectral analysis. The background radiation level and limitations on the detector allowed us to calculate minimum detection limit for extrasolar radiation sources with our set up.



قيم البحث

اقرأ أيضاً

PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensit ive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of $65^circ$), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.
104 - H. Gast , R. Greim , T. Kirn 2009
A precision measurement of the cosmic-ray positron spectrum may help to solve the puzzle of the nature of dark matter. Pairwise annihilation of neutralinos, predicted by some supersymmetric extensions to the standard model of particle physics, may le ave a distinct feature in the cosmic-ray positron spectrum. As the available data are limited both in terms of statistics and energy range, we are developing a balloon-borne detector (PEBS) with a large acceptance of 4000 cm^2 sr. A superconducting magnet creating a field of 0.8 T and a tracking device consisting of scintillating fibers of 0.25 mm diameter with silicon photomultiplier readout will allow rigidity and charge determination to energies above 100 GeV. The dominant proton background is suppressed by the combination of an electromagnetic calorimeter and a transition radiation detector consisting of fleece layers interspersed with straw-tube proportional counters. The calorimeter uses a sandwich of tungsten and scintillating fibers that are again read out by silicon photomultipliers.
PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X- ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high radiation environments. Measurements of neutrons in two separate energy bands are achieved by placing one LiCAF detector inside a moderating polyethylene shield while the second detector remains unshielded. The PoGOLino instrument was launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A description of the detector design and read-out system is presented. A detailed set of simulations of the atmospheric neutron environment performed using both PLANETOCOSMICS and Geant4 will also be described. The comparison of the neutron flux measured during flight to predictions based on these simulations will be presented and the consequences for the PoGOLite background will be discussed.
126 - Mark Pearce 2011
The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The pola risation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.
116 - Ph. von Doetinchem 2009
This thesis discusses two different approaches for the measurement of cosmic-ray antiparticles in the GeV to TeV energy range. The first part of this thesis discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project allots long duration balloon flights at one of Earths poles at an altitude of 40 km. GEANT4 simulations were carried out which determine the atmospheric background and attenuation especially for antiparticles. The second part covers the AMS-02 experiment which will be installed in 2010 on the International Space Station at an altitude of about 400 km for about three years to measure cosmic rays without the influence of Earths atmosphere. The present work focuses on the anticoincidence counter system (ACC). The ACC is needed to reduce the trigger rate during periods of high fluxes and to reject external particles crossing the tracker from the side or particles resulting from interactions within the detector which would otherwise disturb the clean charge and momentum measurements. The last point is especially important for the measurement of antinuclei and antiparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا