ترغب بنشر مسار تعليمي؟ اضغط هنا

Balloon-borne gamma-ray polarimetry

140   0   0.0 ( 0 )
 نشر من قبل Mark Pearce
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mark Pearce




اسأل ChatGPT حول البحث

The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.



قيم البحث

اقرأ أيضاً

PoGOLite is a hard X-ray polarimeter operating in the 25-100 keV energy band. The instrument design is optimised for the observation of compact astrophysical sources. Observations are conducted from a stabilised stratospheric balloon platform at an a ltitude of approximately 40 km. The primary targets for first balloon flights of a reduced effective area instrument are the Crab and Cygnus-X1. The polarisation of incoming photons is determined using coincident Compton scattering and photo-absorption events reconstructed in an array of plastic scintillator detector cells surrounded by a bismuth germanate oxide (BGO) side anticoincidence shield and a polyethylene neutron shield. A custom attitude control system keeps the polarimeter field-of-view aligned to targets of interest, compensating for sidereal motion and perturbations such as torsional forces in the balloon rigging. An overview of the PoGOLite project is presented and the outcome of the ill-fated maiden balloon flight is discussed.
109 - M. Friis , M. Kiss , V. Mikhalev 2018
The PoGO mission, including the PoGOLite Pathfinder and PoGO+, aims to provide polarimetric measurements of the Crab system and Cygnus X-1 in the hard X-ray band. Measurements are conducted from a stabilized balloon-borne platform, launched on a 1 mi llion cubic meter balloon from the Esrange Space Center in Sweden to an altitude of approximately 40 km. Several flights have been conducted, resulting in two independent measurements of the Crab polarization and one of Cygnus X-1. Here, a review of the PoGO mission is presented, including a description of the payload and the flight campaigns, and a discussion of some of the scientific results obtained to date.
97 - Q. Abarr , H. Awaki , M.G. Baring 2020
XL-Calibur is a hard X-ray (15-80 keV) polarimetry mission operating from a stabilised balloon-borne platform in the stratosphere. It builds on heritage from the X-Calibur mission, which observed the accreting neutron star GX 301-2 from Antarctica, b etween December 29th 2018 and January 1st 2019. The XL-Calibur design incorporates an X-ray mirror, which focusses X-rays onto a polarimeter comprising a beryllium rod surrounded by Cadmium Zinc Telluride (CZT) detectors. The polarimeter is housed in an anticoincidence shield to mitigate background from particles present in the stratosphere. The mirror and polarimeter-shield assembly are mounted at opposite ends of a 12 m long lightweight truss, which is pointed with arcsecond precision by WASP - the Wallops Arc Second Pointer. The XL-Calibur mission will achieve a substantially improved sensitivity over X-Calibur by using a larger effective area X-ray mirror, reducing background through thinner CZT detectors, and improved anticoincidence shielding. When observing a 1 Crab source for $t_{rm day}$ days, the Minimum Detectable Polarisation (at 99% confidence level) is $sim$2$%cdot t_{rm day}^{-1/2}$. The energy resolution at 40 keV is $sim$5.9 keV. The aim of this paper is to describe the design and performance of the XL-Calibur mission, as well as the foreseen science programme.
The E and B Experiment (EBEX) was a long-duration balloon-borne cosmic microwave background polarimeter that flew over Antarctica in 2013. We describe the experiments optical system, receiver, and polarimetric approach, and report on their in-flight performance. EBEX had three frequency bands centered on 150, 250, and 410 GHz. To make efficient use of limited mass and space we designed a 115 cm$^{2}$sr high throughput optical system that had two ambient temperature mirrors and four anti-reflection coated polyethylene lenses per focal plane. All frequency bands shared the same optical train. Polarimetry was achieved with a continuously rotating achromatic half-wave plate (AHWP) that was levitated with a superconducting magnetic bearing (SMB). Rotation stability was 0.45 % over a period of 10 hours, and angular position accuracy was 0.01 degrees. This is the first use of a SMB in astrophysics. The measured modulation efficiency was above 90 % for all bands. To our knowledge the 109 % fractional bandwidth of the AHWP was the broadest implemented to date. The receiver that contained one lens and the AHWP at a temperature of 4 K, the polarizing grid and other lenses at 1 K, and the two focal planes at 0.25 K performed according to specifications giving focal plane temperature stability with fluctuation power spectrum that had $1/f$ knee at 2 mHz. EBEX was the first balloon-borne instrument to implement technologies characteristic of modern CMB polarimeters including high throughput optical systems, and large arrays of transition edge sensor bolometric detectors with mutiplexed readouts.
Detecting the first electron pairs with nuclear emulsion allows a precise measurement of the direction of incident gamma-rays as well as their polarization. With recent innovations in emulsion scanning, emulsion analyzing capability is becoming incre asingly powerful. Presently, we are developing a balloon-borne gamma-ray telescope using nuclear emulsion. An overview and a status of our telescope is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا