ترغب بنشر مسار تعليمي؟ اضغط هنا

A Color-Excess Extinction map of the Southern Galactic disk from the VVV and GLIMPSE Surveys

136   0   0.0 ( 0 )
 نشر من قبل Mario Soto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An improved high-resolution and deep A$_{Ks}$ foreground dust extinction map is presented for the Galactic disk area within $295^{circ} lesssim l lesssim 350^{circ}$, $-1.0^{circ} lesssim b lesssim +1.0^{circ}$. At some longitudes the map reaches up to $|b|sim2.25^{circ}$, for a total of $sim$148 deg$^2$. The map was constructed via the Rayleigh-Jeans Color Excess (RJCE) technique based on deep near-infrared (NIR) and mid-infrared (MIR) photometry. The new extinction map features a maximum bin size of 1, and relies on NIR observations from the Two Micron All-Sky Survey (2MASS) and new data from ESOs Vista Variables in the Via Lactea (VVV) survey, in concert with MIR observations from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). The VVV photometry penetrates $sim$4 magnitudes fainter than 2MASS, and provides enhanced sampling of the underlying stellar populations in this heavily obscured region. Consequently, the new results supersede existing RJCE maps tied solely to brighter photometry, revealing a systematic underestimation of extinction in prior work that was based on shallower data. The new high-resolution and large-scale extinction map presented here is readily available to the community through a web query interface.



قيم البحث

اقرأ أيضاً

149 - M. Soto , R. Barba , G. Gunthardt 2013
The new multi-epoch near-infrared VVV survey (VISTA Variables in the Via Lactea) is sampling 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Accurate astrometry established for the region surveyed allows the VVV data to be merged with overlapping surveys (e.g., GLIMPSE, WISE, 2MASS, etc.), thereby enabling the construction of longer baseline spectral energy distributions for astronomical targets. However, in order to maximize use of the VVV data, a set of transformation equations are required to place the VVV JHKs photometry onto the 2MASS system. The impetus for this work is to develop those transformations via a comparison of 2MASS targets in 152 VVV fields sampling the Galactic disk. The transformation coefficients derived exhibit a reliance on variables such as extinction. The transformed data were subsequently employed to establish a mean reddening law of E_{J-H}/E_{H-Ks}=2.13 +/- 0.04, which is the most precise determination to date and merely emphasizes the pertinence of the VVV data for determining such important parameters.
157 - R. Deno Stelter 2020
We present an extinction map of the inner $sim$SI{15}{arcminute} by {16}{arcminute} of the Galactic Center (GC) with map `pixels measuring SI{5}{arcsecond} $times$ SI{5}{arcsecond} using integrated light color measurements in the near- and mid-infrar ed. We use a variant of the Rayleigh-Jeans Color Excess (RJCE) method first described by Majewski et al. (2011) as the basis of our work, although we have approached our problem with a Bayesian mindset and dispensed with point-source photometry in favor of surface photometry, turning the challenge of the extremely crowded field at the GC into an advantage. Our results show that extinction at the GC is not inconsistent with a single power law coefficient, $beta=2.03pm0.06$, and compare our results with those using the Red Clump (RC) point-source photometry method of extinction estimation. We find that our measurement of $beta$ and its apparent lack of spatial variation are in agreement with prior studies, despite the bimodal distribution of values in our extinction map at the GC with peaks at um{5} and SI{7.5}{mag}. This bimodal nature of extinction is likely due to the InfraRed Dark Clouds that obscure portions of the inner GC field. We present our extinction law and map and de-reddened NIR CMDs and color-color diagram of the GC region using the point-source catalog of IR sources compiled by DeWitt et al. (2010). The de-reddening is limited by the error in the extinction measurement (typically SI{0.6}{mag}), which is affected by the size of our map pixels and is not fine-grained enough to separate out the multiple stellar populations present toward the GC.
Deep near-IR images from the VISTA Variables in the Via Lactea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the 4$^{rm th}$ Galactic quadrant ($295deg < l < 350deg$, $-2.24deg < b < -1.05deg$). The samples distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyrae population does not extend beyond $l sim340 deg$, and the samples spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.
Knowledge about the large-scale distribution of galaxies is far from complete in the Zone of Avoidance, which is mostly due to high interstellar extinction and to source confusion at lower Galactic latitudes. Past near-infrared (NIR) surveys, such as the Two Micron All Sky Survey (2MASS), have shown the power of probing large-scale structure at these latitudes. Our aim is to map the galaxy distribution across the Southern Galactic plane using the VISTA Variables in the Via Lactea Survey (VVV), which reach 2 to 4 magnitudes deeper than 2MASS. We used SExtractor + PSFEx to identify extended objects and to measure their sizes, the light concentration index, magnitudes, and colours. Morphological and colour constraints and visual inspection were used to confirm galaxies. We present the resulting VVV NIR Galaxy Catalogue of 5563 visually confirmed galaxies, of which only 45 were previously known. This is the largest catalogue of galaxies towards the Galactic plane, with 99% of these galaxies being new discoveries. We found that the galaxy density distribution closely resembled the distribution of low interstellar extinction of the existing NIR maps. We also present a description of the 185 2MASS extended sources observed in the region, of which 16% of these objects had no previous description, which we have now classified. We conclude that interstellar extinction and stellar density are the main limitations for the detection of background galaxies in the Zone of Avoidance. The VVV NIR Galaxy Catalogue is a new data set providing information for extragalactic studies in the Galactic plane.
Extinction in ultraviolet is much more significant than in optical or infrared, which can be very informative to precisely measure the extinction and understand the dust properties in the low extinction areas. The high Galactic latitude sky is such a n area, important for studying the extragalactic sky and the universe. Based on the stellar parameters measured by the LAMOST and GALAH spectroscopy and the ultraviolet photomery by the emph{GALEX} space telescope, the extinction of 1,244,504 stars in the emph{GALEX}/NUV band and 56,123 stars in the emph{GALEX}/FUV band are calculated precisely. textbf{The error of color excess is 0.009, 0.128 and 0.454 mag for $E_{rm G_{BP}, G_{RP}}$, $E_{rm NUV,G_{BP}}$ and $E_{rm FUV,G_{BP}}$ respectively.} They delineates the emph{GALEX}/NUV extinction map of about a third of the sky mainly at the high Galactic latitude area with an angular resolution of $sim 0.4,, rm deg$. The mean color excess ratio in the entire sky areas is derived to be 3.25, 2.95 and -0.37 for $E_{{rm NUV,G_{BP}}} / E_{{rm G_{BP},G_{RP}}}$, $E_{{rm FUV,G_{BP}}} / E_{{rm G_{BP},G_{RP}}}$ and $E_{{rm FUV,NUV}} / E_{{rm G_{BP},G_{RP}}}$ respectively, which is in general agreement with the previous works, and their changes with the Galactic latitude and the interstellar extinction are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا