ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the VVV Survey RR Lyrae Population across the Southern Galactic Plane

200   0   0.0 ( 0 )
 نشر من قبل Tali Palma
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep near-IR images from the VISTA Variables in the Via Lactea (VVV) Survey were used to search for RR Lyrae stars in the Southern Galactic plane. A sizable sample of 404 RR Lyrae of type ab stars was identified across a thin slice of the 4$^{rm th}$ Galactic quadrant ($295deg < l < 350deg$, $-2.24deg < b < -1.05deg$). The samples distance distribution exhibits a maximum density that occurs at the bulge tangent point, which implies that this primarily Oosterhoff type I population of RRab stars does not trace the bar delineated by their red clump counterparts. The bulge RR Lyrae population does not extend beyond $l sim340 deg$, and the samples spatial distribution presents evidence of density enhancements and substructure that warrants further investigation. Indeed, the sample may be employed to evaluate Galactic evolution models, and is particularly lucrative since half of the discovered RR Lyrae are within reach of Gaia astrometric observations.



قيم البحث

اقرأ أيضاً

We present the first results from a new carbon monoxide (CO) survey of the southern Galactic plane being conducted with the Mopra radio telescope in Australia. The 12CO, 13CO and C18O J=1-0 lines are being mapped over the l = 305-345 deg, b = +/- 0.5 deg portion of the 4th quadrant of the Galaxy, at 35 spatial and 0.1 km/s spectral resolution. The survey is being undertaken with two principal science objectives: (i) to determine where and how molecular clouds are forming in the Galaxy and (ii) to probe the connection between molecular clouds and the missing gas inferred from gamma-ray observations. We describe the motivation for the survey, the instrumentation and observing techniques being applied, and the data reduction and analysis methodology. In this paper we present the data from the first degree surveyed, l = 323-324 deg, b = +/- 0.5 deg. We compare the data to the previous CO survey of this region and present metrics quantifying the performance being achieved; the rms sensitivity per 0.1 km/s velocity channel is ~1.5K for 12CO and ~0.7K for the other lines. We also present some results from the region surveyed, including line fluxes, column densities, molecular masses, 12CO/13CO line ratios and 12CO optical depths. We also examine how these quantities vary as a function of distance from the Sun when averaged over the 1 square degree survey area. Approximately 2 x 10E6 MSun of molecular gas is found along the G323 sightline, with an average H2 number density of nH2 ~ 1 cm-3 within the Solar circle. The CO data cubes will be made publicly available as they are published.
The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 micron, ATLASGAL, has been conducted to discover high-mass star-forming regions at different evolutionary phases. Using the Parkes telescope, we observed the NH3 (1,1) to (3,3) inversion transitions towards 354 ATLASGAL clumps in the fourth quadrant. For a subsample of 289 sources, the N2H+ (1-0) line was measured with the Mopra telescope. We measured a median NH3(1,1) line width of about 2 km/s and rotational temperatures from 12 to 28 K with a mean of 18 K. For a subsample with detected NH3 (2,2) hyperfine components, we found that the commonly used method to compute the (2,2) optical depth from the (1,1) optical depth and the (2,2) to (1,1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of about 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of about 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We found a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores and smaller velocity dispersions in low-mass than high-mass star-forming regions. The NH3 (1,1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27+/-0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9+/-0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06+/-0.02 and standard deviation of 0.37 are closer to 1.
179 - A. Savino , A. Koch , Z. Prudil 2020
The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy/peanut structure that constitutes most of the central stellar mass. The nature of th is spheroidal population, whether a small classical bulge, the innermost stellar halo or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to host some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of $13.41 pm 0.54$ Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at $r_{rm GC} sim 5$~kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and whether they can provide alternative explanations for the properties of our sample. We conclude that, within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars, a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.
We use three different techniques to identify hundreds of white dwarf (WD) candidates in the Next Generation Virgo Cluster Survey (NGVS) based on photometry from the NGVS and GUViCS, and proper motions derived from the NGVS and the Sloan Digital Sky Survey (SDSS). Photometric distances for these candidates are calculated using theoretical color-absolute magnitude relations while effective temperatures are measured by fitting their spectral energy distributions. Disk and halo WD candidates are separated using a tangential velocity cut of 200 km~s$^{-1}$ in a reduced proper motion diagram, which leads to a sample of six halo WD candidates. Cooling ages, calculated for an assumed WD mass of 0.6$M_{odot}$, range between 60 Myr and 6 Gyr, although these estimates depend sensitively on the adopted mass. Luminosity functions for the disk and halo subsamples are constructed and compared to previous results from the SDSS and SuperCOSMOS survey. We compute a number density of (2.81 $pm$ 0.52) $times 10^{-3}$~pc$^{-3}$ for the disk WD population--- consistent with previous measurements. We find (7.85 $pm$ 4.55) $times 10^{-6}$~pc$^{-3}$ for the halo, or 0.3% of the disk. Observed stellar counts are also compared to predictions made by the TRILEGAL and Besanc{c}on stellar population synthesis models. The comparison suggests that the TRILEGAL model overpredicts the total number of WDs. The WD counts predicted by the Besanc{c}on model agree with the observations, although a discrepancy arises when comparing the predicted and observed halo WD populations; the difference is likely due to the WD masses in the adopted model halo.
We use deep multi-epoch near-IR images of the VISTA Variables in the Via Lactea (VVV) Survey to search for RR Lyrae stars towards the Southern Galactic plane. Here we report the discovery of a group of RR Lyrae stars close together in VVV tile d025. Inspection of the VVV images and PSF photometry reveals that most of these stars are likely to belong to a globular cluster, that matches the position of the previously known star cluster FSR,1716. The stellar density map of the field yields a $>100$ sigma detection for this candidate globular cluster, that is centered at equatorial coordinates $RA_{J2000}=$16:10:30.0, $DEC_{J2000}=-$53:44:56; and galactic coordinates $l=$329.77812, $b=-$1.59227. The color-magnitude diagram of this object reveals a well populated red giant branch, with a prominent red clump at $K_s=13.35 pm 0.05$, and $J-K_s=1.30 pm 0.05$. We present the cluster RR Lyrae positions, magnitudes, colors, periods and amplitudes. The presence of RR Lyrae indicates an old globular cluster, with age $>10$ Gyr. We classify this object as an Oosterhoff type I globular cluster, based on the mean period of its RR Lyrae type ab, $<P>=0.540$ days, and argue that this is a relatively metal-poor cluster with $[Fe/H] = -1.5 pm 0.4$ dex. The mean extinction and reddening for this cluster are $A_{K_s}=0.38 pm 0.02$, and $E(J-K_s)=0.72 pm 0.02$ mag, respectively, as measured from the RR Lyrae colors and the near-IR color-magnitude diagram. We also measure the cluster distance using the RR Lyrae type ab stars. The cluster mean distance modulus is $(m-M)_0 = 14.38 pm 0.03$ mag, implying a distance $D = 7.5 pm 0.2$ kpc, and a Galactocentric distance $R_G=4.3$ kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا