ترغب بنشر مسار تعليمي؟ اضغط هنا

Astroalign: A Python module for astronomical image registration

77   0   0.0 ( 0 )
 نشر من قبل Martin Beroiz
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an algorithm implemented in the astroalign Python module for image registration in astronomy. Our module does not rely on WCS information and instead matches 3-point asterisms (triangles) on the images to find the most accurate linear transformation between the two. It is especially useful in the context of aligning images prior to stacking or performing difference image analysis. Astroalign can match images of different point-spread functions, seeing, and atmospheric conditions.



قيم البحث

اقرأ أيضاً

135 - Zhe Xu , Jie Luo , Jiangpeng Yan 2020
Deformable image registration (DIR) is essential for many image-guided therapies. Recently, deep learning approaches have gained substantial popularity and success in DIR. Most deep learning approaches use the so-called mono-stream high-to-low, low-t o-high network structure, and can achieve satisfactory overall registration results. However, accurate alignments for some severely deformed local regions, which are crucial for pinpointing surgical targets, are often overlooked. Consequently, these approaches are not sensitive to some hard-to-align regions, e.g., intra-patient registration of deformed liver lobes. In this paper, we propose a novel unsupervised registration network, namely the Full-Resolution Residual Registration Network (F3RNet), for deformable registration of severely deformed organs. The proposed method combines two parallel processing streams in a residual learning fashion. One stream takes advantage of the full-resolution information that facilitates accurate voxel-level registration. The other stream learns the deep multi-scale residual representations to obtain robust recognition. We also factorize the 3D convolution to reduce the training parameters and enhance network efficiency. We validate the proposed method on a clinically acquired intra-patient abdominal CT-MRI dataset and a public inspiratory and expiratory thorax CT dataset. Experiments on both multimodal and unimodal registration demonstrate promising results compared to state-of-the-art approaches.
astroquery is a collection of tools for requesting data from databases hosted on remote servers with interfaces exposed on the internet, including those with web pages but without formal application program interfaces (APIs). These tools are built on the Python requests package, which is used to make HTTP requests, and astropy, which provides most of the data parsing functionality. astroquery modules generally attempt to replicate the web page interface provided by a given service as closely as possible, making the transition from browser-based to command-line interaction easy. astroquery has received significant contributions from throughout the astronomical community, including several significant contributions from telescope archives. astroquery enables the creation of fully reproducible workflows from data acquisition through publication. This paper describes the philosophy, basic structure, and development model of the astroquery package. The complete documentation for astroquery can be found at http://astroquery.readthedocs.io/.
scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Py thon programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image.
DeepReg (https://github.com/DeepRegNet/DeepReg) is a community-supported open-source toolkit for research and education in medical image registration using deep learning.
229 - Peter Erwin 2014
I describe a new, open-source astronomical image-fitting program called Imfit, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriente d design which allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include the usual suspects for galaxy decompositions (Sersic, exponential, Gaussian), along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components which perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-S/N galaxy images using chi^2 minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا