ﻻ يوجد ملخص باللغة العربية
We investigate the potential for optical quantum technologies of Pr3+:Y2O3 in the form of monodisperse spherical nanoparticles. We measured optical inhomogeneous lines of 27 GHz, and optical homogeneous linewidths of 108 kHz and 315 kHz in particles of 400 nm and 150 nm average diameters respectively for the 1D2(0)--> 3H4(0) transition at 1.4 K. Furthermore, ground state and 1D2 excited state hyperfine structures in Y2O3 are here for the first time determined by spectral hole burning and modeled by complete Hamiltonian calculations. Ground-state spin transitions have energies of 5.99 MHz and 10.42 MHz for which we demonstrate spin inhomogeneous linewidths of 42 and 45 kHz respectively. Spin T2 up to 880 microseconds was obtained for the +-3/2-->+-5/2 transition at 10.42 MHz, a value which exceeds that of bulk Pr3+ doped crystals so far reported. These promising results confirm nanoscale Pr3+:Y2O3 as a very appealing candidate to integrate quantum devices. In particular, we discuss here the possibility of using this material for realizing spin photon interfaces emitting indistinguishable single photons.
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron
The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrati
Quantum bit or qubit is a two-level system, which builds the foundation for quantum computation, simulation, communication and sensing. Quantum states of higher dimension, i.e., qutrits (D = 3) and especially qudits (D = 4 or higher), offer significa
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency
The study and manipulation of low dipole moment quantum states has been challenging due to their inaccessibility by conventional spectroscopic techniques. Controlling the spin in such states requires unfeasible strong magnetic fields to overcome typi