ﻻ يوجد ملخص باللغة العربية
Quantum bit or qubit is a two-level system, which builds the foundation for quantum computation, simulation, communication and sensing. Quantum states of higher dimension, i.e., qutrits (D = 3) and especially qudits (D = 4 or higher), offer significant advantages. Particularly, they can provide noise-resistant quantum cryptography, simplify quantum logic and improve quantum metrology. Flying and solid-state qudits have been implemented on the basis of photonic chips and superconducting circuits, respectively. However, there is still a lack of room-temperature qudits with long coherence time and high spectral resolution. The silicon vacancy centers in silicon carbide (SiC) with spin S = 3/2 are quite promising in this respect, but until now they were treated as a canonical qubit system. Here, we apply a two-frequency protocol to excite and image multiple qudit modes in a SiC spin ensemble under ambient conditions. Strikingly, their spectral width is about one order of magnitude narrower than the inhomogeneous broadening of the corresponding spin resonance. By applying Ramsey interferometry to these spin qudits, we achieve a spectral selectivity of 600 kHz and a spectral resolution of 30 kHz. As a practical consequence, we demonstrate absolute DC magnetometry insensitive to thermal noise and strain fluctuations.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in
We explore how to encode more than a qubit in vanadyl porphyrin molecules hosting a electronic spin 1/2 coupled to a nuclear spin 7/2. The spin Hamiltonian and its parameters, as well as the spin dynamics, have been determined via a combination of el
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency
Silicon-vacancy (SiV) centers in diamond are promising systems for quantum information applications due to their bright single photon emission and optically accessible spin states. Furthermore, SiV centers in low-strain diamond are insensitive to per
We investigate the potential for optical quantum technologies of Pr3+:Y2O3 in the form of monodisperse spherical nanoparticles. We measured optical inhomogeneous lines of 27 GHz, and optical homogeneous linewidths of 108 kHz and 315 kHz in particles