ﻻ يوجد ملخص باللغة العربية
The theory of finitely supported algebraic structures represents a reformulation of Zermelo-Fraenkel set theory in which every construction is finitely supported according to the action of a group of permutations of some basic elements named atoms. In this paper we study the properties of finitely supported sets that contain infinite uniformly supported subsets, as well as the properties of finitely supported sets that do not contain infinite uniformly supported subsets. For classical atomic sets, we study whether they contain or not infinite uniformly supported subsets.
Given a compactly supported probability measure on a Riemannian manifold, we study the asymptotic speed at which it can be approximated (in Wasserstein distance of any exponent p) by finitely supported measure. This question has been studied under th
We study the orthogonal polynomials associated with the equilibrium measure, in logarithmic potential theory, living on the attractor of an Iterated Function System. We construct sequences of discrete measures, that converge weakly to the equilibrium
Altenbernd, Thomas and Wohrle have considered in [ATW02] acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Buchi and Muller ones, firstly used for
In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. 1. Every locally finite connected graph has a maximal independent set. 2. Every locally countable connected graph has a
Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for th