ﻻ يوجد ملخص باللغة العربية
Numerical work on shockwave/boundary-layer interactions (SBLIs) to date has largely focused on span-periodic quasi-2D configurations that neglect the influence lateral confinement has on the core flow. The present study is concerned with the effect of flow confinement on Mach 2 laminar SBLI in rectangular ducts. An oblique shock generated by a 2 degree wedge forms a conical swept SBLI with sidewall boundary layers before reflecting from the bottom wall of the domain. Multiple large regions of flow-reversal are observed on the sidewalls, bottom wall and at the corner intersection. The main interaction is found to be strongly three-dimensional and highly dependent on the geometry of the duct. Comparison to quasi-2D span-periodic simulations showed sidewalls strengthen the interaction by 31% for the baseline configuration with an aspect ratio of one. The length of the shock generator and subsequent trailing edge expansion fan position was shown to be a critical parameter in determining the central separation length. By shortening the length of the shock generator, control of the interaction and suppression of the central interaction is demonstrated. Parametric studies of shock strength and duct aspect ratio were performed to find limiting behaviours. For the largest aspect ratio of four, three-dimensionality was visible across 30% of the span width away from the wall. Topological features of the three-dimensional separation are identified and shown to be consistent with `owl-like separations of the first kind. The reflection of the initial conical swept SBLIs is found to be the most significant factor determining the flow structures downstream of the main interaction.
We evaluate the effect of boundary layer losses on two-dimensional H2/O2/Ar cellular detonations obtained in narrow channels. The experiments provide the details of the cellular structure and the detonation speed deficits from the ideal CJ speed. We
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical sim
We perform direct numerical simulations of rotating Rayleigh--Benard convection of fluids with low ($Pr=0.1$) and high ($Pr=5$) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demon
The impact of wall roughness on fully developed laminar pipe flow is investigated numerically. The roughness is comprised of square bars of varying size and pitch. Results show that the inverse relation between the friction factor and the Reynolds nu
In this visualisation, the transition from laminar to turbulent flow is characterised by the intermittent ejection of wall fluid into the outer stream. The normalised thickness of the viscous flow layer reaches an asymptotic value but the physical th