ترغب بنشر مسار تعليمي؟ اضغط هنا

On symplectic fillings of virtually overtwisted torus bundles

148   0   0.0 ( 0 )
 نشر من قبل Austin Christian
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Austin Christian




اسأل ChatGPT حول البحث

We use Menkes JSJ-type decomposition theorem for symplectic fillings to reduce the classification of strong and exact symplectic fillings of virtually overtwisted torus bundles to the same problem for tight lens spaces. For virtually overtwisted structures on elliptic or parabolic torus bundles, this gives a complete classification. For virtually overtwisted structures on hyperbolic torus bundles, we show that every strong or exact filling arises from a filling of a tight lens space via round symplectic 1-handle attachment, and we give a condition under which distinct tight lens space fillings yield the same torus bundle filling.



قيم البحث

اقرأ أيضاً

141 - Marco Golla , Paolo Lisca 2014
We consider a large family F of torus bundles over the circle, and we use recent work of Li--Mak to construct, on each Y in F, a Stein fillable contact structure C. We prove that (i) each Stein filling of (Y,C) has vanishing first Chern class and fir st Betti number, (ii) if Y in F is elliptic then all Stein fillings of (Y,C) are pairwise diffeomorphic and (iii) if Y in F is parabolic or hyperbolic then all Stein fillings of (Y,C) share the same Betti numbers and fall into finitely many diffeomorphism classes. Moreover, for infinitely many hyperbolic torus bundles Y in F we exhibit non-homotopy equivalent Stein fillings of (Y,C).
We classify symplectically foliated fillings of certain contact foliated manifolds. We show that up to symplectic deformation, the unique minimal symplectically foliated filling of the foliated sphere cotangent bundle of the Reeb foliation in the 3-s phere is the associated disk cotangent bundle. En route to the proof, we study another foliated manifold, namely the product of a circle and an annulus with almost horizontal foliation. In this case, the foliated unit cotangent bundle does not have a unique minimal symplectic filling. We classify the foliated fillings of this manifold up to symplectic deformation equivalence using combinatorial invariants of the filling.
We generalize the mixed tori which appear in the second authors JSJ-type decomposition theorem for symplectic fillings of contact manifolds. Mixed tori are convex surfaces in contact manifolds which may be used to decompose symplectic fillings. We ca ll our more general surfaces splitting surfaces, and show that the decomposition of symplectic fillings continues to hold. Specifically, given a strong or exact symplectic filling of a contact manifold which admits a splitting surface, we produce a new symplectic manifold which strongly or exactly fills its boundary, and which is related to the original filling by Liouville surgery.
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0 $-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry.
We establish an existence $h$-principle for symplectic cobordisms of dimension $2n>4$ with concave overtwisted contact boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا