ﻻ يوجد ملخص باللغة العربية
We consider a large family F of torus bundles over the circle, and we use recent work of Li--Mak to construct, on each Y in F, a Stein fillable contact structure C. We prove that (i) each Stein filling of (Y,C) has vanishing first Chern class and first Betti number, (ii) if Y in F is elliptic then all Stein fillings of (Y,C) are pairwise diffeomorphic and (iii) if Y in F is parabolic or hyperbolic then all Stein fillings of (Y,C) share the same Betti numbers and fall into finitely many diffeomorphism classes. Moreover, for infinitely many hyperbolic torus bundles Y in F we exhibit non-homotopy equivalent Stein fillings of (Y,C).
We use Menkes JSJ-type decomposition theorem for symplectic fillings to reduce the classification of strong and exact symplectic fillings of virtually overtwisted torus bundles to the same problem for tight lens spaces. For virtually overtwisted stru
We classify symplectically foliated fillings of certain contact foliated manifolds. We show that up to symplectic deformation, the unique minimal symplectically foliated filling of the foliated sphere cotangent bundle of the Reeb foliation in the 3-s
In this note, we classify Stein fillings of an infinite family of contact 3-manifolds up to diffeomorphism. Some contact 3-manifolds in this family can be obtained by Legendrian surgeries on $(S^3,xi_{std})$ along certain Legendrian 2-bridge knots. W
In this paper, we study strong symplectic fillability and Stein fillability of some tight contact structures on negative parabolic and negative hyperbolic torus bundles over the circle. For the universally tight contact structure with twisting $pi$ i
We prove that if a contact manifold $(M,xi)$ is supported by a planar open book, then Euler characteristic and signature of any Stein filling of $(M,xi)$ is bounded. We also prove a similar finiteness result for contact manifolds supported by spinal