ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical and numerical considerations of the assumptions behind triple closures in epidemic models on networks

107   0   0.0 ( 0 )
 نشر من قبل Istvan Kiss Z
 تاريخ النشر 2019
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Networks are widely used to model the contact structure within a population and in the resulting models of disease spread. While networks provide a high degree of realism, the analysis of the exact model is out of reach and even numerical methods fail for modest network size. Hence, mean-field models (e.g. pairwise) focusing on describing the evolution of some summary statistics from the exact model gained a lot of traction over the last few decades. In this paper we revisit the problem of deriving triple closures for pairwise models and we investigate in detail the assumptions behind some of the well-known closures as well as their validity. Using a top-down approach we start at the level of the entire graph and work down to the level of triples and combine this with information around nodes and pairs. We use our approach to derive many of the existing closures and propose new ones and theoretically connect the two well-studied models of multinomial link and Poisson link selection. The theoretical work is backed up by numerical examples to highlight where the commonly used assumptions may fail and provide some recommendations for how to choose the most appropriate closure when using graphs with no or modest degree heterogeneity.



قيم البحث

اقرأ أيضاً

The course of an epidemic exhibits average growth dynamics determined by features of the pathogen and the population, yet also features significant variability reflecting the stochastic nature of disease spread. The interplay of biological, social, s tructural and random factors makes disease forecasting extraordinarily complex. In this work, we reframe a stochastic branching process analysis in terms of probability generating functions and compare it to continuous time epidemic simulations on networks. In doing so, we predict the diversity of emerging epidemic courses on both homogeneous and heterogeneous networks. We show how the challenge of inferring the early course of an epidemic falls on the randomness of disease spread more so than on the heterogeneity of contact patterns. We provide an analysis which helps quantify, in real time, the probability that an epidemic goes supercritical or conversely, dies stochastically. These probabilities are often assumed to be one and zero, respectively, if the basic reproduction number, or R0, is greater than 1, ignoring the heterogeneity and randomness inherent to disease spread. This framework can give more insight into early epidemic spread by weighting standard deterministic models with likelihood to inform pandemic preparedness with probabilistic forecasts.
We have established a novel mathematical model that considers various aspects of the spreading of the virus, including, the transmission based on being in the latent period, environment to human transmission, governmental decisions, and control measu res. To accomplish this, a compartmental model with eight batches (sub-population groups) has been proposed and the simulation of the set of differential equations has been conducted to show the effects of the various involved parameters. Also, to achieve more accurate results and closer to reality, the coefficients of a system of differential equations containing transmission rates, death rates, recovery rates and etc. have been proposed by some new step-functions viewpoint. Results: First of all, the efficiency of the proposed model has been shown for Iran and Italy, which completely denoted the flexibility of our model for predicting the epidemic progress and its moment behavior. The model has shown that the reopening plans and governmental measures directly affect the number of active cases of the disease. Also, it has specified that even releasing a small portion of the population (about 2-3 percent) can lead to a severe increase in active patients and consequently multiple waves in the disease progress. The effects of the healthcare capacities of the country have been obtained (quantitatively), which clearly specify the importance of this context. Control strategies including strict implementation of mitigation (reducing the transmission rates) and re-quarantine of some portion of population have been investigated and their efficiency has been shown.
School environments are thought to play an important role in the community spread of airborne infections (e.g., influenza) because of the high mixing rates of school children. The closure of schools has therefore been proposed as efficient mitigation strategy, with however high social and economic costs: alternative, less disruptive interventions are highly desirable. The recent availability of high-resolution contact networks in school environments provides an opportunity to design micro-interventions and compare the outcomes of alternative mitigation measures. We consider mitigation measures that involve the targeted closure of school classes or grades based on readily available information such as the number of symptomatic infectious children in a class. We focus on the case of a primary school for which we have high-resolution data on the close-range interactions of children and teachers. We simulate the spread of an influenza-like illness in this population by using an SEIR model with asymptomatics and compare the outcomes of different mitigation strategies. We find that targeted class closure affords strong mitigation effects: closing a class for a fixed period of time -equal to the sum of the average infectious and latent durations- whenever two infectious individuals are detected in that class decreases the attack rate by almost 70% and strongly decreases the probability of a severe outbreak. The closure of all classes of the same grade mitigates the spread almost as much as closing the whole school. Targeted class closure strategies based on readily available information on symptomatic subjects and on limited information on mixing patterns, such as the grade structure of the school, can be almost as effective as whole-school closure, at a much lower cost. This may inform public health policies for the management and mitigation of influenza-like outbreaks in the community.
The COVID-19 pandemic has demonstrated how disruptive emergent disease outbreaks can be and how useful epidemic models are for quantifying risks of local outbreaks. Here we develop an analytical approach to calculate the dynamics and likelihood of ou tbreaks within the canonical Susceptible-Exposed-Infected-Recovered and more general models, including COVID-19 models, with fixed population sizes. We compute the distribution of outbreak sizes including extreme events, and show that each outbreak entails a unique, depletion or boost in the pool of susceptibles and an increase or decrease in the effective recovery rate compared to the mean-field dynamics -- due to finite-size noise. Unlike extreme events occurring in long-lived metastable stochastic systems, the underlying outbreak distribution depends on a full continuum of optimal paths, each connecting two unique non-trivial fixed-points, and thus represents a novel class of extreme dynamics.
154 - Joel C. Miller , Tony TIng 2020
We provide a description of the Epidemics on Networks (EoN) python package designed for studying disease spread in static networks. The package consists of over $100$ methods available for users to perform stochastic simulation of a range of differen t processes including SIS and SIR disease, and generic simple or comlex contagions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا