ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping class group and global Torelli theorem for hyperkahler manifolds: an erratum

98   0   0.0 ( 0 )
 نشر من قبل Misha Verbitsky
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Misha Verbitsky




اسأل ChatGPT حول البحث

A mapping class group of an oriented manifold is a quotient of its diffeomorphism group by the isotopies. In the published version of Mapping class group and a global Torelli theorem for hyperkahler manifolds I made an error based on a wrong quotation of Dennis Sullivans famous paper Infinitesimal computations in topology. I claimed that the natural homomorphism from the mapping class group to the group of automorphims of cohomology of a simply connected Kahler manifold has finite kernel. In a recent preprint arXiv:1907.05693, Matthias Kreck and Yang Su produced counterexamples to this statement. Here I correct this error and other related errors, observing that the results of Mapping class group and a global Torelli theorem remain true after an appropriate change of terminology.



قيم البحث

اقرأ أيضاً

156 - Andrew Putman 2012
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second co homology group of the level p congruence subgroup of the mapping class group, following my papers The second rational homology group of the moduli space of curves with level structures and The Picard group of the moduli space of curves with level structures.
We establish a local model for the moduli space of holomorphic symplectic structures with logarithmic poles, near the locus of structures whose polar divisor is normal crossings. In contrast to the case without poles, the moduli space is singular: wh en the cohomology class of a symplectic structure satisfies certain linear equations with integer coefficients, its polar divisor can be partially smoothed, yielding adjacent irreducible components of the moduli space that correspond to possibly non-normal crossings structures. These components are indexed by combinatorial data we call smoothing diagrams, and amenable to algorithmic classification. Applying the theory to four-dimensional projective space, we obtain a total of 40 irreducible components of the moduli space, most of which are new. Our main technique is a detailed analysis of the relevant deformation complex (the Poisson cohomology) as an object of the constructible derived category.
112 - Olivier Debarre 2018
The aim of these notes is to acquaint the reader with important objects in complex algebraic geometry: K3 surfaces and their higher-dimensional analogs, hyperkahler manifolds. These manifolds are interesting from several points of view: dynamical (so me have interesting automorphism groups), arithmetical (although we will not say anything on this aspect of the theory), and geometric. It is also one of those rare cases where the Torelli theorem allows for a powerful link between the geometry of these manifolds and lattice theory. We do not prove all the results that we state. Our aim is more to provide, for specific families of hyperkahler manifolds (which are projective deformations of punctual Hilbert schemes of K3 surfaces), a panorama of results about projective embeddings, automorphisms, moduli spaces, period maps and domains, rather than a complete reference guide. These results are mostly not new, except perhaps those of Appendix B (written with E. Macr`i), where we give an explicit description of the image of the period map for these polarized manifolds.
Let $text{M}_C( 2, mathcal{O}_C) cong mathbb{P}^3$ denote the coarse moduli space of semistable vector bundles of rank $2$ with trivial determinant over a smooth projective curve $C$ of genus $2$ over $mathbb{C}$. Let $beta_C$ denote the natural Brau er class over the stable locus. We prove that if $f^*( beta_{C}) = beta_C$ for some birational map $f$ from $text{M}_C( 2, mathcal{O}_C)$ to $text{M}_{C}( 2, mathcal{O}_{C})$, then the Jacobians of $C$ and of $C$ are isomorphic as abelian varieties. If moreover these Jacobians do not admit real multiplication, then the curves $C$ and $C$ are isomorphic. Similar statements hold for Kummer surfaces in $mathbb{P}^3$ and for quadratic line complexes.
93 - Ljudmila Kamenova 2016
This paper is a survey of finiteness results in hyperkahler geometry. We review some classical theorems by Sullivan, Kollar-Matsusaka, Huybrechts, as well as theorems in the recent literature by Charles, Sawon, and joint results of the author with Ve rbitsky. We also strengthen a finiteness theorem of the author. These are extended notes of the authors talk during the closing conference of the Simons Semester in the Banach Center in Bc{e}dlewo, Poland.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا