ﻻ يوجد ملخص باللغة العربية
Statistical natural language inference (NLI) models are susceptible to learning dataset bias: superficial cues that happen to associate with the label on a particular dataset, but are not useful in general, e.g., negation words indicate contradiction. As exposed by several recent challenge datasets, these models perform poorly when such association is absent, e.g., predicting that I love dogs contradicts I dont love cats. Our goal is to design learning algorithms that guard against known dataset bias. We formalize the concept of dataset bias under the framework of distribution shift and present a simple debiasing algorithm based on residual fitting, which we call DRiFt. We first learn a biased model that only uses features that are known to relate to dataset bias. Then, we train a debiased model that fits to the residual of the biased model, focusing on examples that cannot be predicted well by biased features only. We use DRiFt to train three high-performing NLI models on two benchmark datasets, SNLI and MNLI. Our debiased models achieve significant gains over baseline models on two challenge test sets, while maintaining reasonable performance on the original test sets.
Popular Natural Language Inference (NLI) datasets have been shown to be tainted by hypothesis-only biases. Adversarial learning may help models ignore sensitive biases and spurious correlations in data. We evaluate whether adversarial learning can be
Natural Language Inference (NLI) is the task of inferring the logical relationship, typically entailment or contradiction, between a premise and hypothesis. Code-mixing is the use of more than one language in the same conversation or utterance, and i
Natural language inference (NLI) is formulated as a unified framework for solving various NLP problems such as relation extraction, question answering, summarization, etc. It has been studied intensively in the past few years thanks to the availabili
We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the fea
Recent studies show that crowd-sourced Natural Language Inference (NLI) datasets may suffer from significant biases like annotation artifacts. Models utilizing these superficial clues gain mirage advantages on the in-domain testing set, which makes t