ﻻ يوجد ملخص باللغة العربية
Popular Natural Language Inference (NLI) datasets have been shown to be tainted by hypothesis-only biases. Adversarial learning may help models ignore sensitive biases and spurious correlations in data. We evaluate whether adversarial learning can be used in NLI to encourage models to learn representations free of hypothesis-only biases. Our analyses indicate that the representations learned via adversarial learning may be less biased, with only small drops in NLI accuracy.
We propose a hypothesis only baseline for diagnosing Natural Language Inference (NLI). Especially when an NLI dataset assumes inference is occurring based purely on the relationship between a context and a hypothesis, it follows that assessing entail
Statistical natural language inference (NLI) models are susceptible to learning dataset bias: superficial cues that happen to associate with the label on a particular dataset, but are not useful in general, e.g., negation words indicate contradiction
We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the fea
State-of-the-art attacks on NLP models lack a shared definition of a what constitutes a successful attack. We distill ideas from past work into a unified framework: a successful natural language adversarial example is a perturbation that fools the mo
We study the problem of adversarial language games, in which multiple agents with conflicting goals compete with each other via natural language interactions. While adversarial language games are ubiquitous in human activities, little attention has b