ﻻ يوجد ملخص باللغة العربية
We call a polynomial monogenic if a root $theta$ has the property that $mathbb{Z}[theta]$ is the full ring of integers in $mathbb{Q}(theta)$. Consider the two families of trinomials $x^n + ax + b$ and $x^n + cx^{n-1} + d$. For any $n>2$, we show that these families are monogenic infinitely often and give some positive densities in terms of the coefficients. When $n=5$ or 6 and when a certain factor of the discriminant is square-free, we use the Montes algorithm to establish necessary and sufficient conditions for monogeneity, illuminating more general criteria given by Jakhar, Khanduja, and Sangwan using other methods. Along the way we remark on the equivalence of certain aspects of the Montes algorithm and Dedekinds index criterion.
Riffaut (2019) conjectured that a singular modulus of degree $hge 3$ cannot be a root of a trinomial with rational coefficients. We show that this conjecture follows from the GRH, and obtain partial unconditional results.
In this short note we give an expression for some numbers $n$ such that the polynomial $x^{2p}-nx^p+1$ is reducible.
Using arithmetic jet spaces, we attach perfectoid spaces to smooth schemes and to $delta$-morphisms of smooth schemes. We also study perfectoid spaces attached to arithmetic differential equations defined by some of the remarkable $delta$-morphisms a
Consider polynomials over ${rm GF}(2)$. We describe efficient algorithms for finding trinomials with large irreducible (and possibly primitive) factors, and give examples of trinomials having a primitive factor of degree $r$ for all Mersenne exponent
Let $f_0(z) = exp(z/(1-z))$, $f_1(z) = exp(1/(1-z))E_1(1/(1-z))$, where $E_1(x) = int_x^infty e^{-t}t^{-1}{,d}t$. Let $a_n = [z^n]f_0(z)$ and $b_n = [z^n]f_1(z)$ be the corresponding Maclaurin series coefficients. We show that $a_n$ and $b_n$ may be