ﻻ يوجد ملخص باللغة العربية
Systems with many stable configurations abound in nature, both in living and inanimate matter. Their inherent nonlinearity and sensitivity to small perturbations make them challenging to study, particularly in the presence of external driving, which can alter the relative stability of different attractors. Under such circumstances, one may ask whether any clear relationship holds between the specific pattern of external driving and the particular attractor states selected by a driven multistable system. To gain insight into this question, we numerically study driven disordered mechanical networks of bistable springs which possess a vast number of stable configurations arising from the two stable rest lengths of each spring, thereby capturing the essential physical properties of a broad class of multistable systems. We find that the attractor states of driven disordered multistable mechanical networks are fine-tuned with respect to the pattern of external forcing to have low work absorption from it. Furthermore, we find that these drive-specific attractor states are even more stable than expected for a given level of work absorption. Our results suggest that the driven exploration of the vast configuration space of these systems is biased towards states with exceptional relationship to the driving environment, and could therefore be used to `discover states with desired response properties in systems with a vast landscape of diverse configurations.
In self-organized criticality (SOC) models, as well as in standard phase transitions, criticality is only present for vanishing driving external fields $h rightarrow 0$. Considering that this is rarely the case for natural systems, such a restriction
Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching domi
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology b
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con
Spontaneous synchronization is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collect