ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous synchronization and nonequilibrium statistical mechanics of coupled phase oscillators

172   0   0.0 ( 0 )
 نشر من قبل Shamik Gupta Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spontaneous synchronization is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collective oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronization. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre-stage of research in the field of non-linear dynamics, and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronization phenomenon it exhibits, we summarize recent results on the study of a generalized Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalized model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalized Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.



قيم البحث

اقرأ أيضاً

We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.
We study stabilizer quantum error correcting codes (QECC) generated under hybrid dynamics of local Clifford unitaries and local Pauli measurements in one dimension. Building upon 1) a general formula relating the error-susceptibility of a subregion t o its entanglement properties, and 2) a previously established mapping between entanglement entropies and domain wall free energies of an underlying spin model, we propose a statistical mechanical description of the QECC in terms of entanglement domain walls. Free energies of such domain walls generically feature a leading volume law term coming from its surface energy, and a sub-volume law correction coming from thermodynamic entropies of its transverse fluctuations. These are most easily accounted for by capillary-wave theory of liquid-gas interfaces, which we use as an illustrative tool. We show that the information-theoretic decoupling criterion corresponds to a geometric decoupling of domain walls, which further leads to the identification of the contiguous code distance of the QECC as the crossover length scale at which the energy and entropy of the domain wall are comparable. The contiguous code distance thus diverges with the system size as the subleading entropic term of the free energy, protecting a finite code rate against local undetectable errors. We support these correspondences with numerical evidence, where we find capillary-wave theory describes many qualitative features of the QECC; we also discuss when and why it fails to do so.
122 - Fatihcan M. Atay 2003
Coupled oscillators are shown to experience amplitude death for a much larger set of parameter values when they are connected with time delays distributed over an interval rather than concentrated at a point. Distributed delays enlarge and merge deat h islands in the parameter space. Furthermore, when the variance of the distribution is larger than a threshold the death region becomes unbounded and amplitude death can occur for any average value of delay. These phenomena are observed even with a small spread of delays, for different distribution functions, and an arbitrary number of oscillators.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a nd fluctuating networks, we find that random network alternations can enhance the synchronizability. Synchronized states appear to be maximally stable when fluctuations are much faster than the time-delay, even when the instantaneous state of the network does not allow synchronization. This enhancing effect disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, a desynchronizing resonance is reported. Moreover, we observe characteristic oscillations, with a periodicity related to the coupling delay, as the system approaches or drifts away from the synchronized state.
79 - Fatihcan M. Atay 2004
Networks of weakly nonlinear oscillators are considered with diffusive and time-delayed coupling. Averaging theory is used to determine parameter ranges for which the network experiences amplitude death, whereby oscillations are quenched and the equi librium solution has a large domain of attraction. The amplitude death is shown to be a common phenomenon, which can be observed regardless of the precise nature of the nonlinearities and under very general coupling conditions. In addition, when the network consists of dissimilar oscillators, there exist parameter values for which only parts of the network are suppressed. Sufficient conditions are derived for total and partial amplitude death in arbitrary network topologies with general nonlinearities, coupling coefficients, and connection delays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا