ﻻ يوجد ملخص باللغة العربية
Multilingual NMT has become an attractive solution for MT deployment in production. But to match bilingual quality, it comes at the cost of larger and slower models. In this work, we consider several ways to make multilingual NMT faster at inference without degrading its quality. We experiment with several light decoder architectures in two 20-language multi-parallel settings: small-scale on TED Talks and large-scale on ParaCrawl. Our experiments demonstrate that combining a shallow decoder with vocabulary filtering leads to more than twice faster inference with no loss in translation quality. We validate our findings with BLEU and chrF (on 380 language pairs), robustness evaluation and human evaluation.
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at th
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-
Multilingual neural machine translation (NMT) has recently been investigated from different aspects (e.g., pivot translation, zero-shot translation, fine-tuning, or training from scratch) and in different settings (e.g., rich resource and low resourc