ﻻ يوجد ملخص باللغة العربية
In this work we aim to analyze the effect of a strong antisymmetric spin-orbit coupling (ASOC) on superconductivity of noncentrosymmetric LaPtSi. We study the energy gap structure of polycrystalline LaPtSi by using magnetic penetration depth measurements down to 0.02$T_c$. We observed a dirty s-wave behavior, which provides compelling evidence that the spin-singlet component of the mixed pairing state is highly dominant. This is consistent with previous results in the sense that the mere presence of a strong ASOC does not lead to unconventional behaviors. Our result also downplays LaPtSi as a good candidate for realizing time-reversal invariant topological superconductivity.
Whereas there exists considerable evidence for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over tri
Superconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be
We study theoretically the onset of nonuniform superconductivity in a one-dimensional single wire in presence of Zeeman (or exchange field) and spin-orbit coupling. Using the Greens function formalism, we show that the spin-orbit coupling stabilizes
We have examined the intrinsic spin-orbit coupling (SOC) and orbital depairing in thin films of Nb-doped SrTiO$_3$ by superconducting tunneling spectroscopy. The orbital depairing is geometrically suppressed in the two-dimensional limit, enabling a q
A notable characteristic of PbTaSe$_2$, a prototypical noncentrosymmetric (NCS) superconductor, is that its superconductivity can be modulated through a structural transition under hydrostatic pressure [Phys. Rev. B 95, 224508 (2017)]. Here we report