ﻻ يوجد ملخص باللغة العربية
A modified 3D-Ewald summation is presented for accurately simulating the ion-dipole mixture under dielectric confinement. The method is based on the combination of image charges and image dipoles with the conventional Ewald summation and has a scaling O(^3/2). The accuracy and efficiency of our algorithm are examined through numerical examples.
Ewald summation is an important technique used to deal with long-range Coulomb interaction. While it is widely used in simulations of molecules and solid state materials, many important results are dispersed in literature and their implementations ar
The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solu
Ion mobility and ionic conductance in nanodevices are known to deviate from bulk behavior, a phenomenon often attributed to surface effects. We demonstrate that dielectric mismatch between the electrolyte and the surface can qualitatively alter ionic
We develop a statistical theory for the dynamics of non-aligning, non-interacting self-propelled particles confined in a convex box in two dimensions. We find that when the size of the box is small compared to the persistence length of a particles tr
The volume phase transition of microgels is one of the most paradigmatic examples of stimuli-responsiveness, enabling a collapse from a highly swollen microgel state into a densely coiled state by an external stimulus. Although well characterized in