ﻻ يوجد ملخص باللغة العربية
Ewald summation is an important technique used to deal with long-range Coulomb interaction. While it is widely used in simulations of molecules and solid state materials, many important results are dispersed in literature and their implementations are often buried deep in large software packages. Since reliable and systematic calculation of Coulomb interaction is critical for the investigation of perovskites, here we start from the fundamentals of Ewald summation and derive clear expressions for long-range charge-charge, dipole-dipole, and charge-dipole interactions, which can be readily used for numerical computations. We also provide the interaction matrix for efficient Monte Carlo simulations involving charges and dipoles, implementing them in a Python software package. A new type of interaction matrix, which accounts for the electrostatic energy change when ions are displaced, is also derived and implemented. These results are the foundations for the investigation of ferroelectric perovskites.
A modified 3D-Ewald summation is presented for accurately simulating the ion-dipole mixture under dielectric confinement. The method is based on the combination of image charges and image dipoles with the conventional Ewald summation and has a scalin
The molecular dipole moment ($boldsymbol{mu}$) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra, as well as induction and long-range electrostatic interactions. Furthermore, it can be ext
Two-dimensional (2D) transition-metal oxide perovskites greatly expand the field of available 2D multifunctional material systems. Here, based on density functional theory calculations, we predicted the presence of ferromagnetism orders accompanying
The phase-transition sequence of a ferroelectric perovskite such as BaTiO_3 can be simulated by computing the statistical mechanics of a first-principles derived effective Hamiltonian [Zhong, Vanderbilt and Rabe, Phys. Rev. Lett. 73, 1861 (1994)]. Wi
Using the self-consistent Landau-Ginzburg-Devonshire approach we simulate and analyze the spontaneous formation of the domain structure in thin ferroelectric films covered with the surface screening charge of the specific nature (Bardeen-type surface