ﻻ يوجد ملخص باللغة العربية
Ambisonics i.e., a full-sphere surround sound, is quintessential with 360-degree visual content to provide a realistic virtual reality (VR) experience. While 360-degree visual content capture gained a tremendous boost recently, the estimation of corresponding spatial sound is still challenging due to the required sound-field microphones or information about the sound-source locations. In this paper, we introduce a novel problem of generating Ambisonics in 360-degree videos using the audio-visual cue. With this aim, firstly, a novel 360-degree audio-visual video dataset of 265 videos is introduced with annotated sound-source locations. Secondly, a pipeline is designed for an automatic Ambisonic estimation problem. Benefiting from the deep learning-based audio-visual feature-embedding and prediction modules, our pipeline estimates the 3D sound-source locations and further use such locations to encode to the B-format. To benchmark our dataset and pipeline, we additionally propose evaluation criteria to investigate the performance using different 360-degree input representations. Our results demonstrate the efficacy of the proposed pipeline and open up a new area of research in 360-degree audio-visual analysis for future investigations.
Reverberation from audio reflecting off surfaces and objects in the environment not only degrades the quality of speech for human perception, but also severely impacts the accuracy of automatic speech recognition. Prior work attempts to remove reverb
Human auditory cortex excels at selectively suppressing background noise to focus on a target speaker. The process of selective attention in the brain is known to contextually exploit the available audio and visual cues to better focus on target spea
Speech separation aims to separate individual voice from an audio mixture of multiple simultaneous talkers. Although audio-only approaches achieve satisfactory performance, they build on a strategy to handle the predefined conditions, limiting their
Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to per
Generating music with emotion similar to that of an input video is a very relevant issue nowadays. Video content creators and automatic movie directors benefit from maintaining their viewers engaged, which can be facilitated by producing novel materi