ترغب بنشر مسار تعليمي؟ اضغط هنا

Emotional Video to Audio Transformation Using Deep Recurrent Neural Networks and a Neuro-Fuzzy System

73   0   0.0 ( 0 )
 نشر من قبل Gwenaelle Cunha Sergio
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating music with emotion similar to that of an input video is a very relevant issue nowadays. Video content creators and automatic movie directors benefit from maintaining their viewers engaged, which can be facilitated by producing novel material eliciting stronger emotions in them. Moreover, theres currently a demand for more empathetic computers to aid humans in applications such as augmenting the perception ability of visually and/or hearing impaired people. Current approaches overlook the videos emotional characteristics in the music generation step, only consider static images instead of videos, are unable to generate novel music, and require a high level of human effort and skills. In this study, we propose a novel hybrid deep neural network that uses an Adaptive Neuro-Fuzzy Inference System to predict a videos emotion from its visual features and a deep Long Short-Term Memory Recurrent Neural Network to generate its corresponding audio signals with similar emotional inkling. The former is able to appropriately model emotions due to its fuzzy properties, and the latter is able to model data with dynamic time properties well due to the availability of the previous hidden state information. The novelty of our proposed method lies in the extraction of visual emotional features in order to transform them into audio signals with corresponding emotional aspects for users. Quantitative experiments show low mean absolute errors of 0.217 and 0.255 in the Lindsey and DEAP datasets respectively, and similar global features in the spectrograms. This indicates that our model is able to appropriately perform domain transformation between visual and audio features. Based on experimental results, our model can effectively generate audio that matches the scene eliciting a similar emotion from the viewer in both datasets, and music generated by our model is also chosen more often.



قيم البحث

اقرأ أيضاً

Speech enhancement (SE) aims to reduce noise in speech signals. Most SE techniques focus only on addressing audio information. In this work, inspired by multimodal learning, which utilizes data from different modalities, and the recent success of con volutional neural networks (CNNs) in SE, we propose an audio-visual deep CNNs (AVDCNN) SE model, which incorporates audio and visual streams into a unified network model. We also propose a multi-task learning framework for reconstructing audio and visual signals at the output layer. Precisely speaking, the proposed AVDCNN model is structured as an audio-visual encoder-decoder network, in which audio and visual data are first processed using individual CNNs, and then fused into a joint network to generate enhanced speech (the primary task) and reconstructed images (the secondary task) at the output layer. The model is trained in an end-to-end manner, and parameters are jointly learned through back-propagation. We evaluate enhanced speech using five instrumental criteria. Results show that the AVDCNN model yields a notably superior performance compared with an audio-only CNN-based SE model and two conventional SE approaches, confirming the effectiveness of integrating visual information into the SE process. In addition, the AVDCNN model also outperforms an existing audio-visual SE model, confirming its capability of effectively combining audio and visual information in SE.
In this paper we propose a new method of speaker diarization that employs a deep learning architecture to learn speaker embeddings. In contrast to the traditional approaches that build their speaker embeddings using manually hand-crafted spectral fea tures, we propose to train for this purpose a recurrent convolutional neural network applied directly on magnitude spectrograms. To compare our approach with the state of the art, we collect and release for the public an additional dataset of over 6 hours of fully annotated broadcast material. The results of our evaluation on the new dataset and three other benchmark datasets show that our proposed method significantly outperforms the competitors and reduces diarization error rate by a large margin of over 30% with respect to the baseline.
N-HANS is a Python toolkit for in-the-wild audio enhancement, including speech, music, and general audio denoising, separation, and selective noise or source suppression. The functionalities are realised based on two neural network models sharing the same architecture, but trained separately. The models are comprised of stacks of residual blocks, each conditioned on additional speech or environmental noise recordings for adapting to different unseen speakers or environments in real life. In addition to a Python API, a command line interface is provided to researchers and developers, both of which are documented at https://github.com/N-HANS/N-HANS. Experimental results indicate that N-HANS achieves outstanding performance, and ensure its reliable usage in real-life audio and speech-related tasks, reaching very high audio and speech quality.
The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment, an important subtask of music information retrieval. We present a novel method to detect such diffe rences between the score and performance for a given piece of music using progressively dilated convolutional neural networks. Our method incorporates varying dilation rates at different layers to capture both short-term and long-term context, and can be employed successfully in the presence of limited annotated data. We conduct experiments on audio recordings of real performances that differ structurally from the score, and our results demonstrate that our models outperform standard methods for structure-aware audio-to-score alignment.
Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features, which cannot be adapted to different acoustic conditions. We propose a method to overcome this limitation using learned frame similarity for audio-to-score alignment. We focus on offline audio-to-score alignment of piano music. Experiments on music data from different acoustic conditions demonstrate that our method achieves higher alignment accuracy than a standard DTW-based method that uses handcrafted features, and generates robust alignments whilst being adaptable to different domains at the same time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا