ترغب بنشر مسار تعليمي؟ اضغط هنا

IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation

52   0   0.0 ( 0 )
 نشر من قبل Yanning Zhou
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cell instance segmentation in Pap smear image remains challenging due to the wide existence of occlusion among translucent cytoplasm in cell clumps. Conventional methods heavily rely on accurate nuclei detection results and are easily disturbed by miscellaneous objects. In this paper, we propose a novel Instance Relation Network (IRNet) for robust overlapping cell segmentation by exploring instance relation interaction. Specifically, we propose the Instance Relation Module to construct the cell association matrix for transferring information among individual cell-instance features. With the collaboration of different instances, the augmented features gain benefits from contextual information and improve semantic consistency. Meanwhile, we proposed a sparsity constrained Duplicate Removal Module to eliminate the misalignment between classification and localization accuracy for candidates selection. The largest cervical Pap smear (CPS) dataset with more than 8000 cell annotations in Pap smear image was constructed for comprehensive evaluation. Our method outperforms other methods by a large margin, demonstrating the effectiveness of exploring instance relation.



قيم البحث

اقرأ أيضاً

Low level features like edges and textures play an important role in accurately localizing instances in neural networks. In this paper, we propose an architecture which improves feature pyramid networks commonly used instance segmentation networks by incorporating low level features in all layers of the pyramid in an optimal and efficient way. Specifically, we introduce a new layer which learns new correlations from feature maps of multiple feature pyramid levels holistically and enhances the semantic information of the feature pyramid to improve accuracy. Our architecture is simple to implement in instance segmentation or object detection frameworks to boost accuracy. Using this method in Mask RCNN, our model achieves consistent improvement in precision on COCO Dataset with the computational overhead compared to the original feature pyramid network.
90 - Kuikun Liu , Jie Yang , Cai Sun 2021
Currently, instance segmentation is attracting more and more attention in machine learning region. However, there exists some defects on the information propagation in previous Mask R-CNN and other network models. In this paper, we propose supervised adaptive threshold network for instance segmentation. Specifically, we adopt the Mask R-CNN method based on adaptive threshold, and by establishing a layered adaptive network structure, it performs adaptive binarization on the probability graph generated by Mask RCNN to obtain better segmentation effect and reduce the error rate. At the same time, an adaptive feature pool is designed to make the transmission between different layers of the network more accurate and effective, reduce the loss in the process of feature transmission, and further improve the mask method. Experiments on benchmark data sets indicate that the effectiveness of the proposed model
Instance segmentation of overlapping objects in biomedical images remains a largely unsolved problem. We take up this challenge and present MultiStar, an extension to the popular instance segmentation method StarDist. The key novelty of our method is that we identify pixels at which objects overlap and use this information to improve proposal sampling and to avoid suppressing proposals of truly overlapping objects. This allows us to apply the ideas of StarDist to images with overlapping objects, while incurring only a small overhead compared to the established method. MultiStar shows promising results on two datasets and has the advantage of using a simple and easy to train network architecture.
Instance-level object segmentation is an important yet under-explored task. The few existing studies are almost all based on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Noneth eless, generating accurate region proposals itself is quite challenging. In this work, we propose a Proposal-Free Network (PFN ) to address the instance-level object segmentation problem, which outputs the instance numbers of different categories and the pixel-level information on 1) the coordinates of the instance bounding box each pixel belongs to, and 2) the confidences of different categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The whole PFN can be easily trained in an end-to-end way without the requirement of a proposal generation stage. Extensive evaluations on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed PFN solution well beats the state-of-the-arts for instance-level object segmentation. In particular, the $AP^r$ over 20 classes at 0.5 IoU reaches 58.7% by PFN, significantly higher than 43.8% and 46.3% by the state-of-the-art algorithms, SDS [9] and [16], respectively.
Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a Fully Guided Network (FGN) for few-shot instance segmentation. FGN perceives FSIS as a guided model where a so-called support set is encoded and utilized to guide the predictions of a base instance segmentation network (i.e., Mask R-CNN), critical to which is the guidance mechanism. In this view, FGN introduces different guidance mechanisms into the various key components in Mask R-CNN, including Attention-Guided RPN, Relation-Guided Detector, and Attention-Guided FCN, in order to make full use of the guidance effect from the support set and adapt better to the inter-class generalization. Experiments on public datasets demonstrate that our proposed FGN can outperform the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا