ﻻ يوجد ملخص باللغة العربية
We prove a distributional limit theorem conjectured in [Journal of Statistical Physics 174, No. 6, 1372-1403 (2019)] for partition functions defining models of directed polymers on diamond hierarchical graphs with disorder variables placed at the graphical edges. The limiting regime involves a joint scaling in which the number of hierarchical layers, $nin mathbb{N}$, of the graphs grows as the inverse temperature, $betaequiv beta(n)$, vanishes with a fine-tuned dependence on $n$. The conjecture pertains to the marginally relevant disorder case of the model wherein the branching parameter $b in {2,3,ldots}$ and the segmenting parameter $s in {2,3,ldots}$ determining the hierarchical graphs are equal, which coincides with the diamond fractal embedding the graphs having Hausdorff dimension two. Unlike the analogous weak-disorder scaling limit for random polymer models on hierarchical graphs in the disorder relevant $b<s$ case (or for the (1+1)-dimensional polymer on the rectangular lattice), the distributional convergence of the partition function when $b=s$ cannot be approached through a term-by-term convergence to a Wiener chaos expansion, which does not exist for the continuum model emerging in the limit. The analysis proceeds by controlling the distributional convergence of the partition functions in terms of the Wasserstein distance through a perturbative generalization of Steins method at a critical step. In addition, we prove that a similar limit theorem holds for the analogous model with disorder variables placed at the vertices of the graphs.
Diamond lattices are sequences of recursively-defined graphs that provide a network of directed pathways between two fixed root nodes, $A$ and $B$. The construction recipe for diamond graphs depends on a branching number $bin mathbb{N}$ and a segment
We study the directed polymer model for general graphs (beyond $mathbb Z^d$) and random walks. We provide sufficient conditions for the existence or non-existence of a weak disorder phase, of an $L^2$ region, and of very strong disorder, in terms of
Dimensional reduction occurs when the critical behavior of one system can be related to that of another system in a lower dimension. We show that this occurs for directed branched polymers (DBP) by giving an exact relationship between DBP models in D
I discuss models for a continuum directed random polymer in a disordered environment in which the polymer lives on a fractal called the textit{diamond hierarchical lattice}, a self-similar metric space forming a network of interweaving pathways. This
We compute the fluctuation exponents for a solvable model of one-dimensional directed polymers in random environment in the intermediate regime. This regime corresponds to taking the inverse temperature to zero with the size of the system. The expone