ﻻ يوجد ملخص باللغة العربية
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the ``difference between two mixed states. Based on the subregion CV (Complexity equals Volume) conjecture and in the large size limit, we extract out three distinct stages during the evolution of HSC: the stage of linear growth at the early time, the stage of linear growth with a slightly small rate during the intermediate time and the stage of linear decrease at the late time. The growth rates of the first two stages are compared with the Lloyd bound. We find that with some choices of certain parameter, the Lloyd bound is always saturated at the early time, while at the intermediate stage, the growth rate is always less than the Lloyd bound. Moreover, the fact that the behavior of CV conjecture and its version of the subregion in Vaidya spacetime implies that they are different even in the large size limit.
We study holographic subregion volume complexity for a line segment in the AdS$_3$ Vaidya geometry. On the field theory side, this gravity background corresponds to a sudden quench which leads to the thermalization of the strongly-coupled dual confor
We numerically investigate the evolution of the holographic subregion complexity during a quench process in Einstein-Born-Infeld theory. Based on the subregion CV conjecture, we argue that the subregion complexity can be treated as a probe to explore
We construct renormalized holographic entanglement entropy (HEE) and subregion complexity (HSC) in the CV conjecture for asymptotically AdS$_4$ and AdS$_5$ geometries under relevant perturbations. Using the holographic renormalization method develope
Using holographic subregion complexity, we study the confinement-deconfinement phase transition of quantum chromodynamics. In the model we consider here, we observe a connection between the potential energy of probe meson and the behavior of its comp
Using the volume of the space enclosed by the Ryu-Takayanagi (RT) surface, we study the complexity of the disk-shape subregion (with radius R) in various (2+1)-dimensional gapped systems with gravity dual. These systems include a class of toy models