ﻻ يوجد ملخص باللغة العربية
Using holographic subregion complexity, we study the confinement-deconfinement phase transition of quantum chromodynamics. In the model we consider here, we observe a connection between the potential energy of probe meson and the behavior of its complexity. Moreover, near the critical point, at which the phase transition takes place, our numerical calculations indicate that we need less information to specify a meson in the non-conformal vacuum than in the conformal one, despite the fact that the non-conformal vacuum has larger energy!
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the ``difference between t
We construct renormalized holographic entanglement entropy (HEE) and subregion complexity (HSC) in the CV conjecture for asymptotically AdS$_4$ and AdS$_5$ geometries under relevant perturbations. Using the holographic renormalization method develope
We numerically investigate the evolution of the holographic subregion complexity during a quench process in Einstein-Born-Infeld theory. Based on the subregion CV conjecture, we argue that the subregion complexity can be treated as a probe to explore
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or
Using the volume of the space enclosed by the Ryu-Takayanagi (RT) surface, we study the complexity of the disk-shape subregion (with radius R) in various (2+1)-dimensional gapped systems with gravity dual. These systems include a class of toy models