ترغب بنشر مسار تعليمي؟ اضغط هنا

On-Device Text Representations Robust To Misspellings via Projections

110   0   0.0 ( 0 )
 نشر من قبل Chinnadhurai Sankar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, there has been a strong interest in developing natural language applications that live on personal devices such as mobile phones, watches and IoT with the objective to preserve user privacy and have low memory. Advances in Locality-Sensitive Hashing (LSH)-based projection networks have demonstrated state-of-the-art performance in various classification tasks without explicit word (or word-piece) embedding lookup tables by computing on-the-fly text representations. In this paper, we show that the projection based neural classifiers are inherently robust to misspellings and perturbations of the input text. We empirically demonstrate that the LSH projection based classifiers are more robust to common misspellings compared to BiLSTMs (with both word-piece & word-only tokenization) and fine-tuned BERT based methods. When subject to misspelling attacks, LSH projection based classifiers had a small average accuracy drop of 2.94% across multiple classifications tasks, while the fine-tuned BERT model accuracy had a significant drop of 11.44%.



قيم البحث

اقرأ أيضاً

Vector representations of sentences, trained on massive text corpora, are widely used as generic sentence embeddings across a variety of NLP problems. The learned representations are generally assumed to be continuous and real-valued, giving rise to a large memory footprint and slow retrieval speed, which hinders their applicability to low-resource (memory and computation) platforms, such as mobile devices. In this paper, we propose four different strategies to transform continuous and generic sentence embeddings into a binarized form, while preserving their rich semantic information. The introduced methods are evaluated across a wide range of downstream tasks, where the binarized sentence embeddings are demonstrated to degrade performance by only about 2% relative to their continuous counterparts, while reducing the storage requirement by over 98%. Moreover, with the learned binary representations, the semantic relatedness of two sentences can be evaluated by simply calculating their Hamming distance, which is more computational efficient compared with the inner product operation between continuous embeddings. Detailed analysis and case study further validate the effectiveness of proposed methods.
The focus of our paper is the identification and correction of non-word errors in OCR text. Such errors may be the result of incorrect insertion, deletion, or substitution of a character, or the transposition of two adjacent characters within a singl e word. Or, it can be the result of word boundary problems that lead to run-on errors and incorrect-split errors. The traditional N-gram correction methods can handle single-word errors effectively. However, they show limitations when dealing with split and merge errors. In this paper, we develop an unsupervised method that can handle both errors. The method we develop leads to a sizable improvement in the correction rates. This tutorial paper addresses very difficult word correction problems - namely incorrect run-on and split errors - and illustrates what needs to be considered when addressing such problems. We outline a possible approach and assess its success on a limited study.
136 - Yitong Li , Timothy Baldwin , 2018
Written text often provides sufficient clues to identify the author, their gender, age, and other important attributes. Consequently, the authorship of training and evaluation corpora can have unforeseen impacts, including differing model performance for different user groups, as well as privacy implications. In this paper, we propose an approach to explicitly obscure important author characteristics at training time, such that representations learned are invariant to these attributes. Evaluating on two tasks, we show that this leads to increased privacy in the learned representations, as well as more robust models to varying evaluation conditions, including out-of-domain corpora.
61 - Yi Ren , Yangjun Ruan , Xu Tan 2019
Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrog ram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech.
When applying machine learning to problems in NLP, there are many choices to make about how to represent input texts. These choices can have a big effect on performance, but they are often uninteresting to researchers or practitioners who simply need a module that performs well. We propose an approach to optimizing over this space of choices, formulating the problem as global optimization. We apply a sequential model-based optimization technique and show that our method makes standard linear models competitive with more sophisticated, expensive state-of-the-art methods based on latent variable models or neural networks on various topic classification and sentiment analysis problems. Our approach is a first step towards black-box NLP systems that work with raw text and do not require manual tuning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا