ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Robust and Privacy-preserving Text Representations

137   0   0.0 ( 0 )
 نشر من قبل Yitong Li
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Written text often provides sufficient clues to identify the author, their gender, age, and other important attributes. Consequently, the authorship of training and evaluation corpora can have unforeseen impacts, including differing model performance for different user groups, as well as privacy implications. In this paper, we propose an approach to explicitly obscure important author characteristics at training time, such that representations learned are invariant to these attributes. Evaluating on two tasks, we show that this leads to increased privacy in the learned representations, as well as more robust models to varying evaluation conditions, including out-of-domain corpora.



قيم البحث

اقرأ أيضاً

Differentially-private mechanisms for text generation typically add carefully calibrated noise to input words and use the nearest neighbor to the noised input as the output word. When the noise is small in magnitude, these mechanisms are susceptible to reconstruction of the original sensitive text. This is because the nearest neighbor to the noised input is likely to be the original input. To mitigate this empirical privacy risk, we propose a novel class of differentially private mechanisms that parameterizes the nearest neighbor selection criterion in traditional mechanisms. Motivated by Vickrey auction, where only the second highest price is revealed and the highest price is kept private, we balance the choice between the first and the second nearest neighbors in the proposed class of mechanisms using a tuning parameter. This parameter is selected by empirically solving a constrained optimization problem for maximizing utility, while maintaining the desired privacy guarantees. We argue that this empirical measurement framework can be used to align different mechanisms along a common benchmark for their privacy-utility tradeoff, particularly when different distance metrics are used to calibrate the amount of noise added. Our experiments on real text classification datasets show up to 50% improvement in utility compared to the existing state-of-the-art with the same empirical privacy guarantee.
Recently, there has been a strong interest in developing natural language applications that live on personal devices such as mobile phones, watches and IoT with the objective to preserve user privacy and have low memory. Advances in Locality-Sensitiv e Hashing (LSH)-based projection networks have demonstrated state-of-the-art performance in various classification tasks without explicit word (or word-piece) embedding lookup tables by computing on-the-fly text representations. In this paper, we show that the projection based neural classifiers are inherently robust to misspellings and perturbations of the input text. We empirically demonstrate that the LSH projection based classifiers are more robust to common misspellings compared to BiLSTMs (with both word-piece & word-only tokenization) and fine-tuned BERT based methods. When subject to misspelling attacks, LSH projection based classifiers had a small average accuracy drop of 2.94% across multiple classifications tasks, while the fine-tuned BERT model accuracy had a significant drop of 11.44%.
Federated learning has emerged as a popular paradigm for collaboratively training a model from data distributed among a set of clients. This learning setting presents, among others, two unique challenges: how to protect privacy of the clients data du ring training, and how to ensure integrity of the trained model. We propose a two-pronged solution that aims to address both challenges under a single framework. First, we propose to create secure enclaves using a trusted execution environment (TEE) within the server. Each client can then encrypt their gradients and send them to verifiable enclaves. The gradients are decrypted within the enclave without the fear of privacy breaches. However, robustness check computations in a TEE are computationally prohibitive. Hence, in the second step, we perform a novel gradient encoding that enables TEEs to encode the gradients and then offloading Byzantine check computations to accelerators such as GPUs. Our proposed approach provides theoretical bounds on information leakage and offers a significant speed-up over the baseline in empirical evaluation.
Most real world language problems require learning from heterogenous corpora, raising the problem of learning robust models which generalise well to both similar (in domain) and dissimilar (out of domain) instances to those seen in training. This req uires learning an underlying task, while not learning irrelevant signals and biases specific to individual domains. We propose a novel method to optimise both in- and out-of-domain accuracy based on joint learning of a structured neural model with domain-specific and domain-general components, coupled with adversarial training for domain. Evaluating on multi-domain language identification and multi-domain sentiment analysis, we show substantial improvements over standard domain adaptation techniques, and domain-adversarial training.
Deep neural networks (DNNs) are known to be vulnerable to adversarial images, while their robustness in text classification is rarely studied. Several lines of text attack methods have been proposed in the literature, including character-level, word- level, and sentence-level attacks. However, it is still a challenge to minimize the number of word changes necessary to induce misclassification, while simultaneously ensuring lexical correctness, syntactic soundness, and semantic similarity. In this paper, we propose a Bigram and Unigram based adaptive Semantic Preservation Optimization (BU-SPO) method to examine the vulnerability of deep models. Our method has four major merits. Firstly, we propose to attack text documents not only at the unigram word level but also at the bigram level which better keeps semantics and avoids producing meaningless outputs. Secondly, we propose a hybrid method to replace the input words with options among both their synonyms candidates and sememe candidates, which greatly enriches the potential substitutions compared to only using synonyms. Thirdly, we design an optimization algorithm, i.e., Semantic Preservation Optimization (SPO), to determine the priority of word replacements, aiming to reduce the modification cost. Finally, we further improve the SPO with a semantic Filter (named SPOF) to find the adversarial example with the highest semantic similarity. We evaluate the effectiveness of our BU-SPO and BU-SPOF on IMDB, AGs News, and Yahoo! Answers text datasets by attacking four popular DNNs models. Results show that our methods achieve the highest attack success rates and semantics rates by changing the smallest number of words compared with existing methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا