ﻻ يوجد ملخص باللغة العربية
Context. Direct imaging of debris discs gives important information about their nature, their global morphology, and allows us to identify specific structures possibly in connection with the presence of gravitational perturbers. It is the most straightforward technique to observe planetary systems as a whole. Aims. We present the first resolved images of the debris disc around the young F-type star HD 160305, detected in scattered light using the VLT/SPHERE instrument in the near infrared. Methods. We used a post-processing method based on angular differential imaging and synthetic images of debris discs produced with a disc modelling code (GRaTer) to constrain the main characteristics of the disc around HD 160305. All of the point sources in the field of the IRDIS camera were analysed with an astrometric tool to determine whether they are bound objects or background stars. Results. We detect a very inclined (~ 82{deg}) ring-like debris disc located at a stellocentric distance of about 86au (deprojected width ~27 au). The disc displays a brightness asymmetry between the two sides of the major axis, as can be expected from scattering properties of dust grains. We derive an anisotropic scattering factor g>0.5. A second right-left asymmetry is also observed with respect to the minor axis. We measure a surface brightness ratio of 0.73 $pm$ 0.18 between the bright and the faint sides. Because of the low signal-to-noise ratio (S/N) of the images we cannot easily discriminate between several possible explanations for this left-right asymmetry, such as perturbations by an unseen planet, the aftermath of the breakup of a massive planetesimal, or the pericenter glow effect due to an eccentric ring. Two epochs of observations allow us to reject the companionship hypothesis for the 15 point sources present in the field.
Asteroids and comets (planetesimals) are created in gas- and dust-rich protoplanetary discs. The presence of these planetesimals around main-sequence stars is usually inferred from the detection of excess continuum emission at infrared wavelengths fr
HD~106906AB is so far the only young binary system around which a planet has been imaged and a debris disk evidenced thanks to a strong IR excess. As such, it represents a unique opportunity to study the dynamics of young planetary systems. We aim at
We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the
The quest to discover exoplanets is one of the most important missions in astrophysics, and is widely performed using the transit method, which allows for the detection of exoplanets down to the size of Mercury. However, to confirm these detections,
We present 880 um Submillimeter Array observations of the debris disks around the young solar analogue HD 107146 and the multiple-planet host star HR 8799, at an angular resolution of 3 and 6, respectively. We spatially resolve the inner edge of the