ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved Submillimeter Observations of the HR 8799 and HD 107146 Debris Disks

349   0   0.0 ( 0 )
 نشر من قبل A. Meredith Hughes
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 880 um Submillimeter Array observations of the debris disks around the young solar analogue HD 107146 and the multiple-planet host star HR 8799, at an angular resolution of 3 and 6, respectively. We spatially resolve the inner edge of the disk around HR 8799 for the first time. While the data are not sensitive enough (with rms noise of 1 mJy) to constrain the system geometry, we demonstrate that a model by Su et al. (2009) based on the spectral energy distribution (SED) with an inner radius of 150 AU predicts well the spatially resolved data. Furthermore, by modeling simultaneously the SED and visibilities, we demonstrate that the dust is distributed in a broad (of order 100 AU) annulus rather than a narrow ring. We also model the observed SED and visibilities for the HD 107146 debris disk and generate a model of the dust emission that extends in a broad band between 50 and 170 AU from the star. We perform an a posteriori comparison with existing 1.3 mm CARMA observations and demonstrate that a smooth, axisymmetric model reproduces well all of the available millimeter-wavelength data.



قيم البحث

اقرأ أيضاً

We present 1.3 millimeter observations of the debris disk surrounding the HR 8799 multi-planet system from the Submillimeter Array to complement archival ALMA observations that spatially filtered away the bulk of the emission. The image morphology at $3.8$ arcsecond (150 AU) resolution indicates an optically thin circumstellar belt, which we associate with a population of dust-producing planetesimals within the debris disk. The interferometric visibilities are fit well by an axisymmetric radial power-law model characterized by a broad width, $Delta R/Rgtrsim 1$. The belt inclination and orientation parameters are consistent with the planet orbital parameters within the mutual uncertainties. The models constrain the radial location of the inner edge of the belt to $R_text{in}= 104_{-12}^{+8}$ AU. In a simple scenario where the chaotic zone of the outermost planet b truncates the planetesimal distribution, this inner edge location translates into a constraint on the planet~b mass of $M_text{pl} = 5.8_{-3.1}^{+7.9}$ M$_{rm Jup}$. This mass estimate is consistent with infrared observations of the planet luminosity and standard hot-start evolutionary models, with the uncertainties allowing for a range of initial conditions. We also present new 9 millimeter observations of the debris disk from the Very Large Array and determine a millimeter spectral index of $2.41pm0.17$. This value is typical of debris disks and indicates a power-law index of the grain size distribution $q=3.27pm0.10$, close to predictions for a classical collisional cascade.
Dynamical interactions between planets and debris disks may sculpt the disk structure and impact planetary orbits, but only a few systems with both imaged planets and spatially resolved debris disks are known. With the Caltech Submm Observatory (CSO) , we have observed the HR 8799 debris disk at 350{mu}m. The 350{mu}m map is the first spatially resolved measurement of the debris disk encircling the HR 8799 planetary system at this wavelength. Both the flux and size of the emission are consistent with a Kuiper belt of dust extending from ~100-300 AU. Although the resolution of the current map is limited, the map shows an indication of offset asymmetric emission, and several scenarios for this possibility are explored with radiative transfer calculations of a star-disk system and N-body numerical simulations of planet-disk interactions with parameters representative of the HR 8799 system.
We have obtained a full suite of Spitzer observations to characterize the debris disk around HR 8799 and to explore how its properties are related to the recently discovered set of three massive planets orbiting the star. We distinguish three compone nts to the debris system: (1) warm dust (T ~150 K) orbiting within the innermost planet; (2) a broad zone of cold dust (T ~45 K) with a sharp inner edge, orbiting just outside the outermost planet and presumably sculpted by it; and (3) a dramatic halo of small grains originating in the cold dust component. The high level of dynamical activity implied by this halo may arise due to enhanced gravitational stirring by the massive planets. The relatively young age of HR 8799 places it in an important early stage of development and may provide some help in understanding the interaction of planets and planetary debris, an important process in the evolution of our own solar system.
103 - D. Mesa , S. Marino , M. Bonavita 2021
Recent observations of resolved cold debris disks at tens of au have revealed that gaps could be a common feature in these Kuiper belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer-in near the edges of t he disk. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1-2 M Jup for planets located inside the gap and to less than 5 M Jup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the disks around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper motion anomaly of HD 107146 to values of 2-7 au and 2-5 M Jup , respectively.
160 - Kate Y. L. Su 2014
HD 95086 is a young early-type star that hosts (1) a 5 MJ planet at the projected distance of 56 AU revealed by direct imaging, and (2) a prominent debris disk. Here we report the detection of 69 um crystalline olivine feature from the disk using the Spitzer/MIPS-SED data covering 55-95 um. Due to the low resolution of MIPS-SED mode, this feature is not spectrally resolved, but is consistent with the emission from crystalline forsterite contributing 5% of the total dust mass. We also present detailed analysis of the disk SED and re-analysis of resolved images obtained by Herschel. Our results suggest that the debris structure around HD 95086 consists of a warm (175 K) belt, a cold (55 K) disk, and an extended disk halo (up to 800 AU), and is very similar to that of HR 8799. We compare the properties of the three debris components, and suggest that HD 95086 is a young analog of HR 8799. We further investigate and constrain single-planet, two-planet, three-planet and four-planet architectures that can account for the observed debris structure and are compatible with dynamical stability constraints. We find that equal-mass four-planet configurations of geometrically spaced orbits, with each planet of mass 5 MJ, could maintain the gap between the warm and cold debris belts, and also be just marginally stable for timescales comparable to the age of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا