ﻻ يوجد ملخص باللغة العربية
A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodynamically coexisting phases is found to be captured by a surprisingly simple analytic expression that has a geometric interpretation in the space of the two densities. The analytic expression is based on arguments involving symmetries and invariances. It is supported by numerical computations of high precision and it agrees with earlier conjectures obtained for special cases in the same model. An application is presented to three-phase equilibria in the vicinity of a tricritical point. Using the interfacial tension expression and employing the field variables compatible with tricritical point scaling, the expected mean-field critical exponent is derived for the vanishing of the critical interfacial tension as a function of the deviation of the noncritical interfacial tension from its limiting value, upon approach to a critical endpoint in the phase diagram. The analytic results are again confirmed by numerical computations of high precision.
We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [1], the three minima of these potentials form a small triangle l
The phase transition of hard-sphere Heisenberg and Neutral Hard spheres mixture fluids has been investigated with the density functional theory in mean-field approximation (MF). The matrix of second derivatives of the grand canonical potential $Omega
A previous analysis of scaling, bounds, and inequalities for the non-interacting functionals of thermal density functional theory is extended to the full interacting functionals. The results are obtained from analysis of the related functionals from
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to
A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large dista