ﻻ يوجد ملخص باللغة العربية
The phase transition of hard-sphere Heisenberg and Neutral Hard spheres mixture fluids has been investigated with the density functional theory in mean-field approximation (MF). The matrix of second derivatives of the grand canonical potential $Omega$ with respect to the total density, concentration, and the magnetization fluctuations has been investigated and diagonalized. The zero of the smallest eigenvalue $lambda_s$ signalizes the phase instability and the related eigenvector $textbf{x}_s$ characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a mixed spinodal where the order parameter is a mixture of total density, concentration, and magnetization. Although in the fixed total number density or temperature sections the obtained spinodal diagrams are quite similar topology, the predominant phase instabilities are considerable different by analyzing $textbf{x}_s$ in density-concentration-magnetization fluctuations space. Furthermore the spinodal diagrams in the different fixed concentration are topologically different.
We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [1], the three minima of these potentials form a small triangle l
A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodyna
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to
We construct a density functional for the lattice gas / Ising model on square and cubic lattices based on lattice fundamental measure theory. In order to treat the nearest-neighbor attractions between the lattice gas particles, the model is mapped to
Many features of granular media can be modelled as a fluid of hard spheres with {em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental