ﻻ يوجد ملخص باللغة العربية
The efficient classification of different types of supernova is one of the most important problems for observational cosmology. However, spectroscopic confirmation of most objects in upcoming photometric surveys, such as the The Rubin Observatory Legacy Survey of Space and Time (LSST), will be unfeasible. The development of automated classification processes based on photometry has thus become crucial. In this paper we investigate the performance of machine learning (ML) classification on the final cosmological constraints using simulated lightcurves from The Supernova Photometric Classification Challenge, released in 2010. We study the use of different feature sets for the lightcurves and many different ML pipelines based on either decision tree ensembles or automated search processes. To construct the final catalogs we propose a threshold selection method, by employing a emph{Bias-Variance tradeoff}. This is a very robust and efficient way to minimize the Mean Squared Error. With this method we were able to get very strong cosmological constraints, which allowed us to keep $sim 75%$ of the total information in the type Ia SNe when using the SALT2 feature set and $sim 33%$ for the other cases (based on either the Newling model or on standard wavelet decomposition).
We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon
The Pan-STARRS (PS1) Medium Deep Survey discovered over 5,000 likely supernovae (SNe) but obtained spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3,147 of these likely SNe and estimate
The present paper analyses the quasar clustering using the two-point correlation function (2pCF) and the largest existing sample of photometrically selected quasars: the SDSS NBCKDE catalogue (from the SDSS DR6). A new technique of random catalogue g
Recent cosmological analyses (e.g., JLA, Pantheon) of Type Ia Supernova (SNIa) have propagated systematic uncertainties into a covariance matrix and either binned or smoothed the systematic vectors in redshift space. We demonstrate that systematic er
We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on