ﻻ يوجد ملخص باللغة العربية
We study direct limits of embedded Cantor sets and embedded sier curves. We show that under appropriate conditions on the embeddings, all limits of Cantor spaces give rise to homeomorphic spaces, called $omega$-Cantor spaces, and similarly, all limits of sier curves give homeomorphic spaces, called to $omega$-sier curves. We then show that the former occur naturally as Morse boundaries of right-angled Artin groups and fundamental groups of non-geometric graph manifolds, while the latter occur as Morse boundaries of fundamental groups of finite-volume, cusped hyperbolic 3-manifolds.
The Morse boundary of a proper geodesic metric space is designed to encode hypberbolic-like behavior in the space. A key property of this boundary is that a quasi-isometry between two such spaces induces a homeomorphism on their Morse boundaries. In
In this paper we survey many of the known results about Morse boundaries and stability.
We introduce a new type of boundary for proper geodesic spaces, called the Morse boundary, that is constructed with rays that identify the hyperbolic directions in that space. This boundary is a quasi-isometry invariant and thus produces a well-defin
We investigate the geometry of the graphs of nonseparating curves for surfaces of finite positive genus with potentially infinitely many punctures. This graph has infinite diameter and is known to be Gromov hyperbolic by work of the author. We study
We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddi