ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of truth predicates in matrix semantics

230   0   0.0 ( 0 )
 نشر من قبل Tommaso Moraschini
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف T. Moraschini




اسأل ChatGPT حول البحث

Abstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic L is associated with a matrix semantics Mod*(L). This paper is a contribution to the systematic study of the so-called truth sets of the matrices in Mod*(L). In particular, we show that the fact that the truth sets of Mod*(L) can be defined by means of equations with universally quantified parameters is captured by an order-theoretic property of the Leibniz operator restricted to deductive filters of L. This result was previously known for equational definability without parameters. Similarly, it was known that the truth sets of Mod*(L) are implicitly definable if and only if the Leibniz operator is injective on deductive filters of L over every algebra. However, it was an open problem whether the injectivity of the Leibniz operator transfers from the theories of L to its deductive filters over arbitrary algebras. We show that this is the case for logics expressed in a countable language, and that it need not be true in general. Finally we consider an intermediate condition on the truth sets in Mod*(L) that corresponds to the order-reflection of the Leibniz operator.



قيم البحث

اقرأ أيضاً

We study the model theory of expansions of Hilbert spaces by generic predicates. We first prove the existence of model companions for generic expansions of Hilbert spaces in the form first of a distance function to a random substructure, then a dista nce to a random subset. The theory obtained with the random substructure is {omega}-stable, while the one obtained with the distance to a random subset is $TP_2$ and $NSOP_1$. That example is the first continuous structure in that class.
Higher inductive types are a class of type-forming rules, introduced to provide basic (and not-so-basic) homotopy-theoretic constructions in a type-theoretic style. They have proven very fruitful for the synthetic development of homotopy theory withi n type theory, as well as in formalizing ordinary set-level mathematics in type theory. In this article, we construct models of a wide range of higher inductive types in a fairly wide range of settings. We introduce the notion of cell monad with parameters: a semantically-defined scheme for specifying homotopically well-behaved notions of structure. We then show that any suitable model category has *weakly stable typal initial algebras* for any cell monad with parameters. When combined with the local universes construction to obtain strict stability, this specializes to give models of specific higher inductive types, including spheres, the torus, pushout types, truncations, the James construction, and general localisations. Our results apply in any sufficiently nice Quillen model category, including any right proper, simplicially locally cartesian closed, simplicial Cisinski model category (such as simplicial sets) and any locally presentable locally cartesian closed category (such as sets) with its trivial model structure. In particular, any locally presentable locally cartesian closed $(infty,1)$-category is presented by some model category to which our results apply.
101 - F. Bou , F. Esteva , J. M. Font 2009
Let K be a variety of (commutative, integral) residuated lattices. The substructural logic usually associated with K is an algebraizable logic that has K as its equivalent algebraic semantics, and is a logic that preserves truth, i.e., 1 is the only truth value preserved by the inferences of the logic. In this paper we introduce another logic associated with K, namely the logic that preserves degrees of truth, in the sense that it preserves lower bounds of truth values in inferences. We study this second logic mainly from the point of view of abstract algebraic logic. We determine its algebraic models and we classify it in the Leibniz and the Frege hierarchies: we show that it is always fully selfextensional, that for most varieties K it is non-protoalgebraic, and that it is algebraizable if and only K is a variety of generalized Heyting algebras, in which case it coincides with the logic that preserves truth. We also characterize the new logic in three ways: by a Hilbert style axiomatic system, by a Gentzen style sequent calculus, and by a set of conditions on its closure operator. Concerning the relation between the two logics, we prove that the truth preserving logic is the purely inferential extension of the one that preserves degrees of truth with either the rule of Modus Ponens or the rule of Adjunction for the fusion connective.
250 - Edward Grefenstette 2013
The development of compositional distributional models of semantics reconciling the empirical aspects of distributional semantics with the compositional aspects of formal semantics is a popular topic in the contemporary literature. This paper seeks t o bring this reconciliation one step further by showing how the mathematical constructs commonly used in compositional distributional models, such as tensors and matrices, can be used to simulate different aspects of predicate logic. This paper discusses how the canonical isomorphism between tensors and multilinear maps can be exploited to simulate a full-blown quantifier-free predicate calculus using tensors. It provides tensor interpretations of the set of logical connectives required to model propositional calculi. It suggests a variant of these tensor calculi capable of modelling quantifiers, using few non-linear operations. It finally discusses the relation between these variants, and how this relation should constitute the subject of future work.
We introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition of graded bisimulation with respect to Kripke frames by modifying the definition of monotonic bisimulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا