ﻻ يوجد ملخص باللغة العربية
We study the model theory of expansions of Hilbert spaces by generic predicates. We first prove the existence of model companions for generic expansions of Hilbert spaces in the form first of a distance function to a random substructure, then a distance to a random subset. The theory obtained with the random substructure is {omega}-stable, while the one obtained with the distance to a random subset is $TP_2$ and $NSOP_1$. That example is the first continuous structure in that class.
We prove that $IHS_A$, the theory of infinite dimensional Hilbert spaces equipped with a generic automorphism, is $aleph_0$-stable up to perturbation of the automorphism, and admits prime models up to perturbation over any set. Similarly, $APr_A$, th
Abstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic L is associated with a matrix semantics Mod*(L). This paper is a contribution to the sys
We continue the study of a class of topological $mathcal{L}$-fields endowed with a generic derivation $delta$, focussing on describing definable groups. We show that one can associate to an $mathcal{L}_{delta}$ definable group a type $mathcal{L}$-def
We compare three notions of genericity of separable metric structures. Our analysis provides a general model theoretic technique of showing that structures are generic in descriptive set theoretic (topological) sense and in measure theoretic sense.
We prove that a wide Morley sequence in a wide generically stable type is isometric to the standard basis of an $ell_p$ space for some $p$.