ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel $B$-decay signatures of light scalars at high energy facilities

282   0   0.0 ( 0 )
 نشر من قبل Maria Ramos
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phenomenology of light scalars of masses $m_1$ and $m_2$ coupling to heavy flavour-violating vector bosons of mass $m_V$. For $m_{1,2}lesssim $ few GeV, this scenario triggers the rare $B$ meson decays $B_s^0to 3mu^+ 3mu^-$, $B^0to 3mu^+ 3mu^-$, $B^+to K^+ 3mu^+ 3mu^-$ and $B_s^0to K^{0*} 3mu^+ 3mu^-$; the last two being the most important ones for $m_1sim m_2$. None of these signals has been studied experimentally; therefore we propose analyses to test these channels at the LHCb. We demonstrate that the reach of this facility extends to branching ratios as small as $6.0times 10^{-9}$, $1.6times 10^{-9}$, $5.9times 10^{-9}$ and $1.8times 10^{-8}$ for the aforementioned channels, respectively. For $m_{1,2}gg mathcal{O}(1)$ GeV, we show that slightly modifi



قيم البحث

اقرأ أيضاً

107 - Mark Strikman 2007
We outline several directions for future investigations of the three-dimensional structure of nucleon, including multiparton correlations, color transparency, and branching processes at hadron colliders and at hadron factories. We also find evidence that pQCD regime for non-vacuum Regge trajectories sets in for $-tge 1 {GeV}^2$ leading to nearly t-independent trajectories.
We sketch a novel method to search for light di-leptonic resonances by exploiting precision measurements of Drell-Yan production. Motivated by the recent hints of lepton flavour universality violation in $B to K^{ast} ell^+ ell^-$, we illustrate our proposal by studying the case of spin-1 resonances that couple to muons and have masses in the range of a few GeV. We show that the existing LHC data on $pp to Z/gamma^ast to mu^+ mu^-$ put non-trivial constraints on light di-muon resonance interpretations of $B$ decay anomalies in a model-independent fashion. The impact of our proposal on the long-standing discrepancy in the anomalous magnetic moment of the muon is also briefly discussed.
We evaluated recent CLAS Collaboration measurements for the $90^circ$ meson photoproduction off the nucleon using a tagged photon beam spanning the energy interval $s = 3 - 11$ GeV$^2$. The results are compared with the Quark Counting Rules predictions.
We consider supersymmetric extensions of the standard model with a vector-like doublet $(T , B)$ of quarks with charge $2/3$ and $-1/3$, respectively. Compared to non-supersymmetric models, there is a variety of new decay modes for the vector-like qu arks, involving the extra scalars present in supersymmetry. The importance of these new modes, yielding multi-top, multi-bottom and also multi-Higgs signals, is highlighted by the analysis of several benchmark scenarios. We show how the triangles commonly used to represent the branching ratios of the `standard decay modes of the vector-like quarks involving $W$, $Z$ or Higgs bosons can be generalised to include additional channels. We give an example by recasting the limits of a recent heavy quark search for this more general case.
There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay an d scattering are the most commonly explored channels in beam-dump type experiments, while conversion has typically been utilized by light-shining-through-wall (LSW) experiments. A new class of experiments, dubbed PASSAT (Particle Accelerator helioScopes for Slim Axion-like-particle deTection), has been proposed to make use of the ALP-to-photon conversion in a novel way: ALPs, after being produced in a beam-dump setup, turn into photons in a magnetic field placed near the source. It has been shown that such hybrid beam-dump-helioscope experiments can probe regions of parameter space that have not been investigated by other laboratory-based experiments, hence providing complementary information; in particular, they probe a fundamentally different region than decay or LSW experiments. We propose the implementation of PASSAT in future neutrino experiments, taking a DUNE-like experiment as an example. We demonstrate that the magnetic field in the planned DUNE multi-purpose detector is already capable of probing the ALP-photon coupling down to $g_{agammagamma} sim {rm few}times 10^{-5}$ GeV$^{-1}$ for ALP masses $m_a lesssim 10$ eV. The implementation of a CAST or BabyIAXO-like magnet would improve the sensitivity down to $g_{agammagamma} sim 10^{-6}$ GeV$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا