ﻻ يوجد ملخص باللغة العربية
There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay and scattering are the most commonly explored channels in beam-dump type experiments, while conversion has typically been utilized by light-shining-through-wall (LSW) experiments. A new class of experiments, dubbed PASSAT (Particle Accelerator helioScopes for Slim Axion-like-particle deTection), has been proposed to make use of the ALP-to-photon conversion in a novel way: ALPs, after being produced in a beam-dump setup, turn into photons in a magnetic field placed near the source. It has been shown that such hybrid beam-dump-helioscope experiments can probe regions of parameter space that have not been investigated by other laboratory-based experiments, hence providing complementary information; in particular, they probe a fundamentally different region than decay or LSW experiments. We propose the implementation of PASSAT in future neutrino experiments, taking a DUNE-like experiment as an example. We demonstrate that the magnetic field in the planned DUNE multi-purpose detector is already capable of probing the ALP-photon coupling down to $g_{agammagamma} sim {rm few}times 10^{-5}$ GeV$^{-1}$ for ALP masses $m_a lesssim 10$ eV. The implementation of a CAST or BabyIAXO-like magnet would improve the sensitivity down to $g_{agammagamma} sim 10^{-6}$ GeV$^{-1}$.
Axion-like particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The h
We perform a feasibility study of a beam dump experiment at the International Linear Collider (ILC). To investigate the sensitivity to new light particles at the experiment, we consider models for axion-like particles (ALPs) and a light scalar partic
We consider the light $Z$ explanation of the muon $g-2$ anomaly. Even if such a $Z$ has no tree-level coupling to electrons, in general one will be induced at loop-level. We show that future beam dump experiments are powerful enough to place stringen
Axion-like particles (ALPs) are pseudo Nambu-Goldstone bosons of spontaneously broken global symmetries in high-energy extensions of the Standard Model (SM). This makes them a prime target for future experiments aiming to discover new physics which a
Axion-like particles (ALPs) are predicted by many extensions of the Standard Model (SM). When ALP mass lies in the range of MeV to GeV, the cosmology and astrophysics will be largely irrelevant. In this work, we investigate such light ALPs through th