ﻻ يوجد ملخص باللغة العربية
We tackle two long-standing problems related to re-expansions in heuristic search algorithms. For graph search, A* can require $Omega(2^{n})$ expansions, where $n$ is the number of states within the final $f$ bound. Existing algorithms that address this problem like B and B improve this bound to $Omega(n^2)$. For tree search, IDA* can also require $Omega(n^2)$ expansions. We describe a new algorithmic framework that iteratively controls an expansion budget and solution cost limit, giving rise to new graph and tree search algorithms for which the number of expansions is $O(n log C)$, where $C$ is the optimal solution cost. Our experiments show that the new algorithms are robust in scenarios where existing algorithms fail. In the case of tree search, our new algorithms have no overhead over IDA* in scenarios to which IDA* is well suited and can therefore be recommended as a general replacement for IDA*.
Recently Avis and Jordan have demonstrated the efficiency of a simple technique called budgeting for the parallelization of a number of tree search algorithms. The idea is to limit the amount of work that a processor performs before it terminates its
We study the {em Budgeted Dominating Set} (BDS) problem on uncertain graphs, namely, graphs with a probability distribution $p$ associated with the edges, such that an edge $e$ exists in the graph with probability $p(e)$. The input to the problem con
In the budgeted learning problem, we are allowed to experiment on a set of alternatives (given a fixed experimentation budget) with the goal of picking a single alternative with the largest possible expected payoff. Approximation algorithms for this
We study approximation algorithms for the problem of minimizing the makespan on a set of machines with uncertainty on the processing times of jobs. In the model we consider, which goes back to~cite{BertsimasS03}, once the schedule is defined an adver
In real-world machine learning applications, there is a cost associated with sampling of different features. Budgeted learning can be used to select which feature-values to acquire from each instance in a dataset, such that the best model is induced