ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet-engineered light-cone spreading of correlations in a driven quantum chain

351   0   0.0 ( 0 )
 نشر من قبل Michael Sentef
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the light-cone-like spread of electronic correlations in a laser-driven quantum chain. Using the time-dependent density matrix renormalization group, we show that high-frequency driving leads to a Floquet-engineered spread velocity that determines the enhancement of density-density correlations when the ratio of potential and kinetic energies is effectively increased both by either a continuous or a pulsed drive. For large times we numerically show the existence of a Floquet steady state at not too long distances on the lattice with minimal heating. Intriguingly, we find a discontinuity of dynamically scaled correlations at the edge of the light cone, akin to the discontinuity known to exist for quantum quenches in Luttinger liquids. Our work demonstrates the potential of pump-probe experiments for investigating light-induced correlations in low-dimensional materials and puts quantitative speed limits on the manipulation of long-ranged correlations through Floquet engineering.



قيم البحث

اقرأ أيضاً

Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context. Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity. We unveil quantum Floquet engineering signatures in these dynamical response functions, such as analogs to dynamical localization and replica side bands, complementing paradigmatic classical Floquet engineering results. Strikingly, the Drude weight in the optical conductivity of the electrons is partially suppressed by the presence of a single cavity mode through an induced electron-electron interaction.
Inelastic neutron-scattering and finite-temperature density matrix renormalization group (DMRG) calculations are used to investigate the spin excitation spectrum of the $S=1/2$ Heisenberg spin chain compound K$_2$CuSO$_4$Cl$_2$ at several temperature s in a magnetic field near saturation. Critical correlations characteristic of the predicted $z=2$, $d=1$ quantum phase transition occurring at saturation are shown to be consistent with the observed neutron spectra. The data is well described with a scaling function computed using a free fermion description of the spins, valid close to saturation, and the corresponding scaling limits. One of the most prominent non-universal spectral features of the data is a novel thermally activated longitudinal mode that remains underdamped across most of the Brillouin zone.
As many-body Floquet theory becomes more popular, it is important to find ways to connect theory with experiment. Theoretical calculations can have a periodic driving field that is always on, but experiment cannot. Hence, we need to know how long a d riving field is needed before the system starts to look like the periodically driven Floquet system. We answer this question here for noninteracting band electrons in the infinite-dimensional limit by studying the properties of the system under pulsed driving fields and illustrating how they approach the Floquet limit. Our focus is on determining the minimal pulse lengths needed to recover the qualitative and semiquantitative Floquet theory results.
Signal propagation in the non equilibirum evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determ ine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of excitations in an appropriately defined generalized Gibbs ensemble.
Adiabatic evolution is a common strategy for manipulating quantum states and has been employed in diverse fields such as quantum simulation, computation and annealing. However, adiabatic evolution is inherently slow and therefore susceptible to decoh erence. Existing methods for speeding up adiabatic evolution require complex many-body operators or are difficult to construct for multi-level systems. Using the tools of Floquet engineering, we design a scheme for high-fidelity quantum state manipulation, utilizing only the interactions available in the original Hamiltonian. We apply this approach to a qubit and experimentally demonstrate its performance with the electronic spin of a Nitrogen-vacancy center in diamond. Our Floquet-engineered protocol achieves state preparation fidelity of $0.994 pm 0.004$, on the same level as the conventional fast-forward protocol, but is more robust to external noise acting on the qubit. Floquet engineering provides a powerful platform for high-fidelity quantum state manipulation in complex and noisy quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا