ﻻ يوجد ملخص باللغة العربية
Machine-learning techniques have proved successful in identifying ordered phases of matter. However, it remains an open question how far they can contribute to the understanding of phases without broken symmetry, such as spin liquids. Here we demonstrate how a machine learning approach can automatically learn the intricate phase diagram of a classical frustrated spin model. The method we employ is a support vector machine equipped with a tensorial kernel and a spectral graph analysis which admits its applicability in an effectively unsupervised context. Thanks to the interpretability of the machine we are able to infer, in closed form, both order parameter tensors of phases with broken symmetry, and the local constraints which signal an emergent gauge structure, and so characterize classical spin liquids. The method is applied to the classical XXZ model on the pyrochlore lattice where it distinguishes---among others---between a hidden biaxial spin nematic phase and several different classical spin liquids. The results are in full agreement with a previous analysis by Taillefumier emph{et al.} [Phys. Rev. X 7, 041057 (2017)], but go further by providing a systematic hierarchy between disordered regimes, and establishing the physical relevance of the susceptibilities associated with the local constraints. Our work paves the way for the search of new orders and spin liquids in generic frustrated magnets.
The formation of coplanar spin spirals is a common motif in the magnetic ordering of many frustrated magnets. For classical antiferromagnets, geometric frustration can lead to a massively degenerate ground state manifold of spirals whose propagation
We construct a set of exact, highly excited eigenstates for a nonintegrable spin-1/2 model in one dimension that is relevant to experiments on Rydberg atoms in the antiblockade regime. These states provide a new solvable example of quantum many-body
We study an incommensurate long-range order induced by an external magnetic field in a quasi-one-dimensional bond-alternating spin system, F5PNN, focusing on the role of the frustrating interaction which can be enhanced by a high-pressure effect. On
Frustrated magnetic interactions in a quasi-two-dimensional [111] slab of pyrochlore lattice were studied. For uniform nearest neighbor (NN) interactions, we show that the complex magnetic problem can be mapped onto a model with two independent degre
Continuous symmetries are believed to emerge at many quantum critical points in frustrated magnets. In this work, we study two candidates of this paradigm: the transverse-field frustrated Ising model (TFFIM) on the triangle and the honeycomb lattices