ﻻ يوجد ملخص باللغة العربية
In this paper we provide performance guarantees for hypocoercive non-reversible MCMC samplers $X_t$ with invariant measure $mu^*$ and our results apply in particular to the Langevin equation, Hamiltonian Monte-Carlo, and the bouncy particle and zig-zag samplers. Specifically, we establish a concentration inequality of Bernstein type for ergodic averages $frac{1}{T} int_0^T f(X_t), dt$. As a consequence we provide performance guarantees: (a) explicit non-asymptotic confidence intervals for $int f dmu^*$ when using a finite time ergodic average with given initial condition $mu$ and (b) uncertainty quantification bounds, expressed in terms of relative entropy rate, on the bias of $int f dmu^*$ when using an alternative or approximate processes $widetilde{X}_t$. (Results in (b) generalize recent results (arXiv:1812.05174) from the authors for coercive dynamics.) The concentration inequality is proved by combining the approach via Feynmann-Kac semigroups first noted by Wu with the hypocoercive estimates of Dolbeault, Mouhot and Schmeiser (arXiv:1005.1495) developed for the Langevin equation and recently generalized to partially deterministic Markov processes by Andrieu et al. (arXiv:1808.08592)
We derive simple concentration inequalities for bounded random vectors, which generalize Hoeffdings inequalities for bounded scalar random variables. As applications, we apply the general results to multinomial and Dirichlet distributions to obtain multivariate concentration inequalities.
Monte Carlo methods are the standard procedure for estimating complicated integrals of multidimensional Bayesian posterior distributions. In this work, we focus on LAIS, a class of adaptive importance samplers where Markov chain Monte Carlo (MCMC) al
A central tool in the study of nonhomogeneous random matrices, the noncommutative Khintchine inequality of Lust-Piquard and Pisier, yields a nonasymptotic bound on the spectral norm of general Gaussian random matrices $X=sum_i g_i A_i$ where $g_i$ ar
We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling tim
Consider $n$ complex random matrices $X_1,ldots,X_n$ of size $dtimes d$ sampled i.i.d. from a distribution with mean $E[X]=mu$. While the concentration of averages of these matrices is well-studied, the concentration of other functions of such matric