ترغب بنشر مسار تعليمي؟ اضغط هنا

On Concentration Inequalities for Random Matrix Products

91   0   0.0 ( 0 )
 نشر من قبل Nikhil Srivastava
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider $n$ complex random matrices $X_1,ldots,X_n$ of size $dtimes d$ sampled i.i.d. from a distribution with mean $E[X]=mu$. While the concentration of averages of these matrices is well-studied, the concentration of other functions of such matrices is less clear. One function which arises in the context of stochastic iterative algorithms, like Ojas algorithm for Principal Component Analysis, is the normalized matrix product defined as $prodlimits_{i=1}^{n}left(I + frac{X_i}{n}right).$ Concentration properties of this normalized matrix product were recently studied by cite{HW19}. However, their result is suboptimal in terms of the dependence on the dimension of the matrices as well as the number of samples. In this paper, we present a stronger concentration result for such matrix products which is optimal in $n$ and $d$ up to constant factors. Our proof is based on considering a matrix Doob martingale, controlling the quadratic variation of that martingale, and applying the Matrix Freedman inequality of Tropp cite{TroppIntro15}.



قيم البحث

اقرأ أيضاً

312 - Xinjia Chen 2013
We derive simple concentration inequalities for bounded random vectors, which generalize Hoeffdings inequalities for bounded scalar random variables. As applications, we apply the general results to multinomial and Dirichlet distributions to obtain multivariate concentration inequalities.
A central tool in the study of nonhomogeneous random matrices, the noncommutative Khintchine inequality of Lust-Piquard and Pisier, yields a nonasymptotic bound on the spectral norm of general Gaussian random matrices $X=sum_i g_i A_i$ where $g_i$ ar e independent standard Gaussian variables and $A_i$ are matrix coefficients. This bound exhibits a logarithmic dependence on dimension that is sharp when the matrices $A_i$ commute, but often proves to be suboptimal in the presence of noncommutativity. In this paper, we develop nonasymptotic bounds on the spectrum of arbitrary Gaussian random matrices that can capture noncommutativity. These bounds quantify the degree to which the deterministic matrices $A_i$ behave as though they are freely independent. This intrinsic freeness phenomenon provides a powerful tool for the study of various questions that are outside the reach of classical methods of random matrix theory. Our nonasymptotic bounds are easily applicable in concrete situations, and yield sharp results in examples where the noncommutative Khintchine inequality is suboptimal. When combined with a linearization argument, our bounds imply strong asymptotic freeness (in the sense of Haagerup-Thorbj{o}rnsen) for a remarkably general class of Gaussian random matrix models, including matrices that may be very sparse and that lack any special symmetries. Beyond the Gaussian setting, we develop matrix concentration inequalities that capture noncommutativity for general sums of independent random matrices, which arise in many problems of pure and applied mathematics.
We derive two upper bounds for the probability of deviation of a vector-valued Lipschitz function of a collection of random variables from its expected value. The resulting upper bounds can be tighter than bounds obtained by a direct application of a classical theorem due to Bobkov and G{o}tze.
167 - J.-R. Chazottes , F. Redig 2010
We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling tim e exists, then we obtain a variance inequality. If a moment of order 1+epsilon of the coupling time exists, then depending on the behavior of the stationary distribution, we obtain higher moment bounds. This immediately implies polynomial concentration inequalities. In the case that a moment of order 1+epsilon is finite uniformly in the starting point of the coupling, we obtain a Gaussian bound. We illustrate the general results with house of cards processes, in which both uniform and non-uniform behavior of moments of the coupling time can occur.
We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intri nsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا